Integrating low-rank and group-sparse structures for robust multi-task learning

钥匙(锁) 计算机科学 水准点(测量) 离群值 一般化 任务(项目管理) 财产(哲学) 人工智能 秩(图论) 计算 机器学习 多任务学习 算法 数学 数学分析 哲学 计算机安全 大地测量学 管理 认识论 组合数学 经济 地理
作者
Jianhui Chen,Jiayu Zhou,Jieping Ye
标识
DOI:10.1145/2020408.2020423
摘要

Multi-task learning (MTL) aims at improving the generalization performance by utilizing the intrinsic relationships among multiple related tasks. A key assumption in most MTL algorithms is that all tasks are related, which, however, may not be the case in many real-world applications. In this paper, we propose a robust multi-task learning (RMTL) algorithm which learns multiple tasks simultaneously as well as identifies the irrelevant (outlier) tasks. Specifically, the proposed RMTL algorithm captures the task relationships using a low-rank structure, and simultaneously identifies the outlier tasks using a group-sparse structure. The proposed RMTL algorithm is formulated as a non-smooth convex (unconstrained) optimization problem. We propose to adopt the accelerated proximal method (APM) for solving such an optimization problem. The key component in APM is the computation of the proximal operator, which can be shown to admit an analytic solution. We also theoretically analyze the effectiveness of the RMTL algorithm. In particular, we derive a key property of the optimal solution to RMTL; moreover, based on this key property, we establish a theoretical bound for characterizing the learning performance of RMTL. Our experimental results on benchmark data sets demonstrate the effectiveness and efficiency of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默夏真发布了新的文献求助30
2秒前
俭朴的一曲完成签到,获得积分10
3秒前
Akin完成签到,获得积分10
3秒前
zhou123432发布了新的文献求助10
3秒前
3秒前
所所应助njupt连赛通采纳,获得10
4秒前
鱼儿完成签到,获得积分10
6秒前
7秒前
xxxx完成签到 ,获得积分10
7秒前
9秒前
HNDuan完成签到,获得积分10
9秒前
10秒前
烟花应助晨雾锁阳采纳,获得10
10秒前
鸡鱼蚝完成签到,获得积分10
11秒前
隐形曼青应助冷静水蓝采纳,获得10
11秒前
11秒前
jenningseastera应助Akin采纳,获得10
12秒前
12秒前
12秒前
LuDans发布了新的文献求助20
13秒前
瀚泛完成签到,获得积分10
14秒前
14秒前
Lucas应助科研通管家采纳,获得10
15秒前
今后应助朝朝暮暮采纳,获得10
15秒前
Thien应助科研通管家采纳,获得10
15秒前
Thien应助科研通管家采纳,获得10
15秒前
一二发布了新的文献求助10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
cdercder应助科研通管家采纳,获得10
15秒前
无限柠檬4519完成签到,获得积分10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
lz应助科研通管家采纳,获得30
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
zz应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得10
16秒前
wanci应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799006
求助须知:如何正确求助?哪些是违规求助? 3344720
关于积分的说明 10321316
捐赠科研通 3061197
什么是DOI,文献DOI怎么找? 1680067
邀请新用户注册赠送积分活动 806880
科研通“疑难数据库(出版商)”最低求助积分说明 763435