Rotating machinery prognostics: State of the art, challenges and opportunities

预言 停工期 状态维修 可靠性工程 可靠性(半导体) 状态监测 背景(考古学) 工程类 资产(计算机安全) 风险分析(工程) 维护措施 计算机科学 计算机安全 医学 古生物学 功率(物理) 物理 电气工程 量子力学 生物
作者
Aiwina Heng,Sheng Zhang,Andy Tan,Joseph Mathew
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:23 (3): 724-739 被引量:1096
标识
DOI:10.1016/j.ymssp.2008.06.009
摘要

Machinery prognosis is the forecast of the remaining operational life, future condition, or probability of reliable operation of an equipment based on the acquired condition monitoring data. This approach to modern maintenance practice promises to reduce downtime, spares inventory, maintenance costs, and safety hazards. Given the significance of prognostics capabilities and the maturity of condition monitoring technology, there have been an increasing number of publications on rotating machinery prognostics in the past few years. These publications covered a wide spectrum of prognostics techniques. This review article first synthesises and places these individual pieces of information in context, while identifying their merits and weaknesses. It then discusses the identified challenges, and in doing so, alerts researchers to opportunities for conducting advanced research in the field. Current methods for predicting rotating machinery failures are summarised and classified as conventional reliability models, condition-based prognostics models and models integrating reliability and prognostics. Areas in need of development or improvement include the integration of condition monitoring and reliability, utilisation of incomplete trending data, consideration of effects from maintenance actions and variable operating conditions, derivation of the non-linear relationship between measured data and actual asset health, consideration of failure interactions, practicability of requirements and assumptions, as well as development of performance evaluation frameworks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaa完成签到,获得积分10
1秒前
晏晏发布了新的文献求助10
1秒前
浑若枫发布了新的文献求助10
2秒前
高瑞发布了新的文献求助20
2秒前
李爱国应助Yu采纳,获得10
3秒前
云宝发布了新的文献求助10
5秒前
凉小远发布了新的文献求助10
5秒前
pilgrim关注了科研通微信公众号
6秒前
哈噗咻完成签到,获得积分20
7秒前
7秒前
7秒前
pilgrim关注了科研通微信公众号
8秒前
系统完成签到,获得积分20
8秒前
8秒前
9秒前
思源应助辛勤如柏采纳,获得10
11秒前
zh发布了新的文献求助20
11秒前
11秒前
领导范儿应助迷路以筠采纳,获得10
11秒前
利华尔完成签到,获得积分10
11秒前
111发布了新的文献求助10
14秒前
夙未晞完成签到,获得积分10
15秒前
16秒前
16秒前
Panting发布了新的文献求助10
17秒前
17秒前
17秒前
siqilinwillbephd应助绝迹天明采纳,获得10
17秒前
18秒前
18秒前
18秒前
raffia完成签到,获得积分20
18秒前
SciGPT应助明理囧采纳,获得10
19秒前
19秒前
20秒前
20秒前
21秒前
梦红发布了新的文献求助10
21秒前
西地兰卡发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Integrating supply and demand-side management in renewable-based energy systems 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5251098
求助须知:如何正确求助?哪些是违规求助? 4415232
关于积分的说明 13745342
捐赠科研通 4286905
什么是DOI,文献DOI怎么找? 2352133
邀请新用户注册赠送积分活动 1349017
关于科研通互助平台的介绍 1308502