Least angle regression

Lasso(编程语言) 普通最小二乘法 数学 算法 选择(遗传算法) 集合(抽象数据类型) 选型 弹性网正则化 线性回归 回归 特征选择 数学优化 对比度(视觉) 最小二乘函数近似 计算机科学 人工智能 统计 估计员 万维网 程序设计语言
作者
Bradley Efron,Trevor Hastie,Iain M. Johnstone,Robert Tibshirani
出处
期刊:Annals of Statistics [Institute of Mathematical Statistics]
卷期号:32 (2) 被引量:9375
标识
DOI:10.1214/009053604000000067
摘要

The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to select a parsimonious set for the efficient prediction of a response variable. Least Angle Regression (LARS), a new model selection algorithm, is a useful and less greedy version of traditional forward selection methods. Three main properties are derived: (1) A simple modification of the LARS algorithm implements the Lasso, an attractive version of ordinary least squares that constrains the sum of the absolute regression coefficients; the LARS modification calculates all possible Lasso estimates for a given problem, using an order of magnitude less computer time than previous methods. (2) A different LARS modification efficiently implements Forward Stagewise linear regression, another promising new model selection method; this connection explains the similar numerical results previously observed for the Lasso and Stagewise, and helps us understand the properties of both methods, which are seen as constrained versions of the simpler LARS algorithm. (3) A simple approximation for the degrees of freedom of a LARS estimate is available, from which we derive a Cp estimate of prediction error; this allows a principled choice among the range of possible LARS estimates. LARS and its variants are computationally efficient: the paper describes a publicly available algorithm that requires only the same order of magnitude of computational effort as ordinary least squares applied to the full set of covariates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研狗完成签到 ,获得积分10
1秒前
1秒前
yshu完成签到,获得积分10
1秒前
李小胖完成签到,获得积分10
1秒前
顺利的尔烟完成签到,获得积分10
1秒前
1秒前
熄熄完成签到 ,获得积分10
1秒前
赵淑敏发布了新的文献求助10
2秒前
干净的烧鹅完成签到,获得积分10
2秒前
wangruiyang完成签到 ,获得积分10
2秒前
失眠万言完成签到 ,获得积分10
2秒前
aa完成签到,获得积分10
2秒前
Eternity完成签到,获得积分10
2秒前
阔达代芹完成签到 ,获得积分10
3秒前
ip07in13发布了新的文献求助10
3秒前
SYLH完成签到,获得积分0
3秒前
3秒前
七曜完成签到,获得积分20
4秒前
4秒前
流火完成签到,获得积分10
4秒前
任性的傲柏完成签到,获得积分10
4秒前
科研通AI2S应助Will采纳,获得10
5秒前
懒123发布了新的文献求助10
5秒前
lbh完成签到,获得积分10
5秒前
5秒前
lyf完成签到,获得积分10
6秒前
6秒前
6秒前
科研通AI2S应助susiex采纳,获得10
6秒前
Galaxy发布了新的文献求助10
7秒前
hh完成签到,获得积分10
7秒前
7秒前
雪白起眸发布了新的文献求助10
7秒前
chem is try发布了新的文献求助10
8秒前
小星星很忙关注了科研通微信公众号
8秒前
8秒前
9秒前
Julo发布了新的文献求助30
9秒前
爱笑的宝马完成签到 ,获得积分10
10秒前
zuol发布了新的文献求助10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792815
求助须知:如何正确求助?哪些是违规求助? 3337271
关于积分的说明 10284330
捐赠科研通 3054023
什么是DOI,文献DOI怎么找? 1675755
邀请新用户注册赠送积分活动 803778
科研通“疑难数据库(出版商)”最低求助积分说明 761534