Efficient segment-update block LMS-Newton algorithm for active control of road noise

自相关矩阵 算法 自相关 计算复杂性理论 还原(数学) 最小均方滤波器 主动噪声控制 噪音(视频) 块(置换群论) 趋同(经济学) 自适应滤波器 基质(化学分析) 降噪 计算机科学 数学 控制理论(社会学) 控制(管理) 人工智能 统计 经济增长 图像(数学) 复合材料 经济 材料科学 几何学
作者
Li Zhu,Xiaojun Qiu,Dongxing Mao,Sheng Wu,Xu Zhong
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:198: 110436-110436 被引量:5
标识
DOI:10.1016/j.ymssp.2023.110436
摘要

For active control of road noise inside a vehicle, many reference signals are required in adaptive control systems, resulting in slow convergence speeds and heavy computational loads. In this paper, a means of reducing the computational complexity of adaptive control algorithms is investigated based on the fast-converging least-mean-squares Newton (LMS-Newton) algorithm. By analyzing the autocorrelation matrix of reference signals filtered by secondary paths, it is found that the dimensions of the autocorrelation matrix of filtered reference signals do not necessarily have to equal the dimensions of the adaptive control filters, and instead the dimensions can be determined from the correlation between reference signals filtered by secondary paths. Then a computationally efficient segment-update block algorithm is proposed that splits adaptive control filters into several segments and the coefficients of each segment are updated independently. Theoretical analysis shows that the proposed segment-update block algorithm has similar convergence speed and noise-reduction performance as the traditional LMS-Newton algorithm when a segment of appropriate length is chosen, but the computational complexity is reduced dramatically because the inverse autocorrelation matrix is replaced by a smaller matrix. The performance of the proposed algorithm is verified through simulation experiments with different recorded road noises and secondary paths, and the results are compared with those of some typical algorithms. The simulation results showed that the proposed algorithm achieved a similar noise-reduction performance with an approximately 8.9-times reduction of computational complexity compared with the traditional LMS-Newton algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王王的狗子完成签到 ,获得积分10
1秒前
2秒前
czr完成签到,获得积分10
2秒前
3秒前
拉拉发布了新的文献求助10
3秒前
坚强的秋白完成签到,获得积分10
5秒前
爆米花应助tulips采纳,获得10
5秒前
6秒前
852应助无聊的怀莲采纳,获得10
7秒前
合适熊猫发布了新的文献求助10
7秒前
9秒前
10秒前
SciGPT应助拉拉采纳,获得10
10秒前
乌啦啦发布了新的文献求助10
11秒前
kou完成签到 ,获得积分20
12秒前
精明晓刚关注了科研通微信公众号
13秒前
大个应助实验耗材采纳,获得10
14秒前
搜集达人应助美好的冰蓝采纳,获得10
15秒前
15秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
彭于晏应助科研通管家采纳,获得10
16秒前
蛇從革应助科研通管家采纳,获得150
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
我是老大应助XH采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
17秒前
温暖半雪完成签到,获得积分10
17秒前
17秒前
大模型应助科研通管家采纳,获得10
17秒前
子车茗应助科研通管家采纳,获得30
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
17秒前
无花果应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得30
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
17秒前
英姑应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
zhonglv7应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296872
求助须知:如何正确求助?哪些是违规求助? 4445936
关于积分的说明 13837692
捐赠科研通 4330953
什么是DOI,文献DOI怎么找? 2377367
邀请新用户注册赠送积分活动 1372651
关于科研通互助平台的介绍 1338148