Multiscale evolution mechanism of sandstone under wet-dry cycles of deionized water: From molecular scale to macroscopic scale

白云石 粘土矿物 溶解 矿物学 地质学 矿物 微观结构 吸附 材料科学 复合材料 化学工程 化学 冶金 有机化学 工程类
作者
Jie Meng,Changdong Li,Jiaqing Zhou,Zihan Zhang,Sheng‐Yi Yan,Yahui Zhang,Dewei Huang,Guihua Wang
出处
期刊:Journal of rock mechanics and geotechnical engineering [Elsevier BV]
卷期号:15 (5): 1171-1185 被引量:23
标识
DOI:10.1016/j.jrmge.2022.10.008
摘要

Water is the most abundant molecule found on the earth's surface and is a key factor in multiscale rock destruction. However, given the fine-grained nature of rock and the complexity of its internal structure, the microstructural evolution of rock under the action of water has not yet been elucidated in detail, and little is understood about the relationship between the rock structure and solid–liquid unit. A variety of techniques were used in this study to track the mechanical properties, pore and crack characteristics, and mineral structure degradation characteristics of sandstone at different stages under the action of deionized water, and the evolution mechanisms of the microstructure were analyzed at the molecular scale. The results showed that during the water–rock interaction process, water was adsorbed onto the surface of dolomite minerals and the hydrophilic surface of clay minerals, forming a high-density hydrogen bond network. However, different mineral surface structures had different water adsorption structures, resulting in the strain of the dense clay mineral aggregates under expansion action. Stress concentrated at crack tips under the capillary force of dolomite minerals (very weak dolomite dissolution). These effects resulted in a substantial increase in the number of small pores and enhancements in pore–crack connectivity, and the rock strength exhibited varying degrees of decline at different stages of wet-dry cycles. In general, the results of this paper will help to further elucidate the internal connections between molecular-scale and macroscale processes in rock science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
wink发布了新的文献求助10
2秒前
smile完成签到,获得积分10
4秒前
4秒前
大个应助杨家欢采纳,获得10
5秒前
zzq完成签到,获得积分10
5秒前
5秒前
sunrise发布了新的文献求助10
6秒前
6秒前
Akim应助怕孤独的若云采纳,获得10
7秒前
8秒前
大模型应助xiaomu采纳,获得10
10秒前
Jimmy Ko发布了新的文献求助10
10秒前
bbb发布了新的文献求助10
10秒前
天天快乐应助Hui_2023采纳,获得10
13秒前
13秒前
梵天发布了新的文献求助10
13秒前
雷媛完成签到,获得积分10
14秒前
LL爱读书完成签到,获得积分10
14秒前
ZDSHI发布了新的文献求助30
15秒前
Akim应助Cythy采纳,获得10
17秒前
colin发布了新的文献求助30
17秒前
FashionBoy应助一见喜采纳,获得10
18秒前
18秒前
18秒前
海聪天宇完成签到,获得积分10
19秒前
白夜完成签到 ,获得积分10
19秒前
哈哈哈哈发布了新的文献求助30
22秒前
zero完成签到,获得积分10
22秒前
经竺发布了新的文献求助10
23秒前
24秒前
隐形曼青应助wink采纳,获得10
24秒前
止血钳完成签到 ,获得积分10
24秒前
25秒前
LEI发布了新的文献求助10
26秒前
大方马里奥完成签到,获得积分10
28秒前
29秒前
冷山完成签到 ,获得积分10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298901
求助须知:如何正确求助?哪些是违规求助? 4447324
关于积分的说明 13842250
捐赠科研通 4332888
什么是DOI,文献DOI怎么找? 2378387
邀请新用户注册赠送积分活动 1373683
关于科研通互助平台的介绍 1339259