Gaussian-type activation function with learnable parameters in complex-valued convolutional neural network and its application for PolSAR classification

卷积神经网络 激活函数 类型(生物学) 模式识别(心理学) 高斯分布 计算机科学 人工智能 功能(生物学) 人工神经网络 数学 物理 生物 生态学 量子力学 进化生物学
作者
Yun Zhang,Qinglong Hua,Haotian Wang,Zhenyuan Ji,Yong Wang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:518: 95-110
标识
DOI:10.1016/j.neucom.2022.10.082
摘要

• Processing Complex-valued PolSAR Data Using Complex-valued Convolutional Neural Network (CV-CNN). • Uses a Gaussian-type activation function (GTAF) that preserves the integrity of complex-valued operations. • Introduces learnable Gaussian parameters for GTAF, and designs two multi-channel activation methods. • The classification accuracy is better than that of existing state-of-the-art methods in three datasets. To process complex-valued information such as SAR signals conveniently, the complex-valued convolutional neural network (CV-CNN) has been proposed in recent years, and it has achieved great success in SAR image recognition. This paper proposes an activation function with learnable parameters based on the Gaussian-type activation function (GTAF) in CV-CNN to improve the utilization of information in the real and imaginary parts of the neuro. For the multi-channel input of the feature map, this paper discusses two ways to set the parameters of the Gaussian-type activation function. One is that all channels share the same parameters, called the channel-sharing Gaussian-type activation function (CSGTAF). The other is that each channel has its independent parameters, called the channel-exclusive Gaussian-type activation function (CEGTAF). In addition, this paper derives the backpropagation formula of both CSGTAF and CEGTAF in detail for the training process of CV-CNN. This paper performs experimental analysis on three L-band standard PolSAR datasets. The experimental results show that, compared with the traditional method and the Gaussian activation function with fixed parameters, both CSGTAF and CEGTAF achieve higher recognition accuracy, and the difference in the recognition effect of different targets in the same dataset is little. Both show good recognition performance and have good stability and versatility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
刚刚
小马甲应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
小蘑菇应助hyl采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
秋白完成签到,获得积分10
2秒前
斯文败类应助hh采纳,获得10
3秒前
传奇3应助木木杨采纳,获得50
3秒前
mmr发布了新的文献求助10
3秒前
南湖秋水发布了新的文献求助10
5秒前
5秒前
6秒前
xihuan完成签到,获得积分20
7秒前
科研通AI5应助long采纳,获得10
8秒前
顾矜应助杨定玺采纳,获得10
9秒前
完美世界应助cwl采纳,获得10
9秒前
Yi完成签到,获得积分10
9秒前
Angelalala发布了新的文献求助30
10秒前
lhy33966完成签到,获得积分10
10秒前
kydd发布了新的文献求助10
11秒前
callous完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
Orange应助Yi采纳,获得10
13秒前
善学以致用应助YellowStar采纳,获得10
15秒前
传奇3应助清秀的冰淇淋采纳,获得10
16秒前
17秒前
17秒前
科研通AI5应助hh采纳,获得10
18秒前
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792128
求助须知:如何正确求助?哪些是违规求助? 3336396
关于积分的说明 10280645
捐赠科研通 3053053
什么是DOI,文献DOI怎么找? 1675455
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761382