KDE-GAN: A multimodal medical image-fusion model based on knowledge distillation and explainable AI modules

鉴别器 计算机科学 人工智能 过度拟合 模式识别(心理学) 图像融合 融合 相互信息 人工神经网络 机器学习 图像(数学) 数据挖掘 语言学 电信 探测器 哲学
作者
Jia Mi,Lifang Wang,Yang Liu,Jiong Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:151: 106273-106273 被引量:20
标识
DOI:10.1016/j.compbiomed.2022.106273
摘要

As medical images contain sensitive patient information, finding a publicly accessible dataset with patient permission is challenging. Furthermore, few large-scale datasets suitable for training image-fusion models are available. To address this issue, we propose a medical image-fusion model based on knowledge distillation (KD) and an explainable AI module-based generative adversarial network with dual discriminators (KDE-GAN). KD reduces the size of the datasets required for training by refining a complex image-fusion model into a simple model with the same feature-extraction capabilities as the complex model. The images generated by the explainable AI module show whether the discriminator can distinguish true images from false images. When the discriminator precisely judges the image based on the key features, the training can be stopped early, reducing overfitting and the amount of data required for training. By training using only small-scale datasets, the trained KDE-GAN can generate clear fused images. KDE-GAN fusion results were evaluated quantitatively using five metrics: spatial frequency, structural similarity, edge information transfer factor, normalized mutual information, and nonlinear correlation information entropy. Experimental results show that the fused images generated by KDE-GAN are superior to state-of-the-art methods, both subjectively and objectively. • We propose an explainable fusion model for medical images that lack sufficient training data. • It uses a generative adversarial network with two discriminators. • It reduces the network complexity of the generator through knowledge distillation. • It uses explainable AI modules to dynamically limit the training of the discriminator. • SPECT-Tc images and SPECT-T1 images were fused with MRI-T2 images by the model. • We use finite images to obtain fused images containing clear features on various fusion tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一应助科研通管家采纳,获得10
刚刚
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
一一应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
kuiuLinvk完成签到,获得积分10
1秒前
久伴久爱完成签到 ,获得积分10
2秒前
3秒前
5秒前
6秒前
6秒前
7秒前
彭于彦祖应助fhh采纳,获得20
7秒前
尧尧完成签到,获得积分10
7秒前
8秒前
谦让的萤发布了新的文献求助10
8秒前
可爱的函函应助xieji采纳,获得10
9秒前
阿凯完成签到 ,获得积分10
10秒前
赘婿应助丫丫采纳,获得30
11秒前
13秒前
先吃一只羊完成签到 ,获得积分10
13秒前
13秒前
13秒前
李爱国应助钱来采纳,获得10
13秒前
14秒前
14秒前
15秒前
李健应助凉拌折耳根采纳,获得30
17秒前
热爱发布了新的文献求助10
17秒前
Jieh发布了新的文献求助10
18秒前
YH发布了新的文献求助10
19秒前
19秒前
炽源发布了新的文献求助10
19秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842288
求助须知:如何正确求助?哪些是违规求助? 3384399
关于积分的说明 10534504
捐赠科研通 3104830
什么是DOI,文献DOI怎么找? 1709838
邀请新用户注册赠送积分活动 823410
科研通“疑难数据库(出版商)”最低求助积分说明 774050