数学
类型(生物学)
力矩(物理)
随机微分方程
噪音(视频)
趋同(经济学)
应用数学
随机偏微分方程
数学分析
微分方程
计算机科学
物理
经典力学
生物
图像(数学)
人工智能
经济
经济增长
生态学
出处
期刊:Authorea - Authorea
日期:2023-01-06
标识
DOI:10.22541/au.167299077.75193340/v1
摘要
In this paper, we study the averaging principle for Caputo type fractional stochastic differential equations with Lévy noise. Firstly, the estimate on higher moments for the solution is given. Secondly, under some suitable assumptions, we show that the solutions of original equations can be approximated by the solutions of averaged equations in the sense of pth moment and convergence in probability by Hölder inequality. Finally, a simulation example is given to verify the theoretical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI