Semi-Fragile Neural Network Watermarking Based on Adversarial Examples

对抗制 数字水印 人工神经网络 计算机科学 人工智能 图像(数学)
作者
Zihan Yuan,Xinpeng Zhang,Zichi Wang,Zhaoxia Yin
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (4): 2775-2790
标识
DOI:10.1109/tetci.2024.3372373
摘要

Deep neural networks (DNNs) may be subject to various modifications during transmission and use. Regular processing operations do not affect the functionality of a model, while malicious tampering will cause serious damage. Therefore, it is crucial to determine the availability of a DNN model. To address this issue, we propose a semi-fragile black-box watermarking method that can distinguish between accidental modification and malicious tampering of DNNs, focusing on the privacy and security of neural network models. Specifically, for a given model, a strategy is designed to generate semi-fragile and sensitive samples using adversarial example techniques without decreasing the model accuracy. The model outputs for these samples are extremely sensitive to malicious tampering and robust to accidental modification. According to these properties, accidental modification and malicious tampering can be distinguished to assess the availability of a watermarked model. Extensive experiments demonstrate that the proposed method can detect malicious model tampering with high accuracy up to 100% while tolerating accidental modifications such as fine-tuning, pruning, and quantitation with the accuracy exceed 75%. Moreover, our semi-fragile neural network watermarking approach can be easily extended to various DNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鹿呀完成签到,获得积分10
刚刚
siwen完成签到,获得积分10
刚刚
aa完成签到,获得积分10
2秒前
xin发布了新的文献求助10
3秒前
科研通AI5应助整齐的萝采纳,获得10
3秒前
三顿饭吃一天完成签到,获得积分10
3秒前
努力的搬砖人完成签到,获得积分10
3秒前
刘cc发布了新的文献求助10
4秒前
4秒前
4秒前
张飞完成签到,获得积分10
4秒前
李天真完成签到,获得积分10
4秒前
清欢完成签到,获得积分10
5秒前
上官若男应助阿拉蕾采纳,获得10
6秒前
6秒前
云墨发布了新的文献求助10
7秒前
可爱的函函应助舒心傲蕾采纳,获得10
7秒前
党丹完成签到,获得积分10
7秒前
8秒前
8秒前
JamesPei应助有魅力的孤云采纳,获得10
8秒前
9秒前
9秒前
9秒前
元羞花发布了新的文献求助10
9秒前
今后应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
疯狂的牛富贵完成签到,获得积分10
10秒前
李健应助科研通管家采纳,获得10
10秒前
10秒前
ED应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
彭于彦祖应助科研通管家采纳,获得30
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841351
求助须知:如何正确求助?哪些是违规求助? 3383439
关于积分的说明 10529854
捐赠科研通 3103519
什么是DOI,文献DOI怎么找? 1709323
邀请新用户注册赠送积分活动 823096
科研通“疑难数据库(出版商)”最低求助积分说明 773813