A Topic-Based Segmentation Model for Identifying Segment-Level Drivers of Star Ratings from Unstructured Text Reviews

分割 明星(博弈论) 计算机科学 自然语言处理 心理学 人工智能 数学 数学分析
作者
Sunghoon Kim,Sanghak Lee,Robert McCulloch
出处
期刊:Journal of Marketing Research [SAGE Publishing]
卷期号:61 (6): 1132-1151 被引量:3
标识
DOI:10.1177/00222437241246752
摘要

Online reviews provide rich information on customer satisfaction, displaying various numeric ratings as well as detailed explanations presented in written form. However, analyzing such data is challenging due to the unstructured nature of text. This article introduces a novel machine-learning method for identifying interpretable key drivers of star ratings from text reviews, which might vary across segments. By adopting the Ising model prior to account for dependence between words, the model simultaneously achieves segmentation, identifies segment-level key topics (i.e., groups of frequently co-occurring words), and estimates the impacts of the selected words on the ratings. The authors first demonstrate that the proposed model successfully identifies segment-specific key drivers of customer satisfaction using illustrative simulated review data. Then, the authors utilize real-world reviews from Yelp for empirical applications. When applied to online reviews of 5,241 Arizona-based restaurants, the model identifies three distinct restaurant segments, each characterized by three to five important topics. The model's performance is evaluated against six benchmark models, encompassing various topic models and latent class regression with variable selection. The comparison results emphasize the proposed model's unique advantages in prediction, interpretability, and handling heterogeneity. Additionally, the authors demonstrate the applicability of the model in examining customer segmentation for individual restaurants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小狗说好运来完成签到 ,获得积分10
1秒前
充电宝应助优秀的你采纳,获得10
1秒前
乐无穷完成签到,获得积分10
2秒前
2秒前
爱始终年轻完成签到,获得积分10
3秒前
Murphy完成签到,获得积分10
5秒前
5秒前
6秒前
Stamina678完成签到,获得积分10
6秒前
xinxin发布了新的文献求助10
7秒前
谢贝贝完成签到 ,获得积分10
8秒前
脑洞疼应助结实的半双采纳,获得10
8秒前
无心的无施完成签到,获得积分10
8秒前
12秒前
一米阳光发布了新的文献求助10
14秒前
CAI313完成签到,获得积分10
16秒前
Ava应助列子采纳,获得10
16秒前
17秒前
科研通AI2S应助sch采纳,获得10
17秒前
yolo3o完成签到,获得积分10
17秒前
烟花应助遥远的猫采纳,获得10
18秒前
拾寒完成签到,获得积分10
20秒前
jufeng完成签到,获得积分10
20秒前
脑洞疼应助自觉的书蝶采纳,获得10
21秒前
22秒前
孪生素数应助科研通管家采纳,获得10
23秒前
Gellisa应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
JPH1990应助科研通管家采纳,获得10
23秒前
Cleo应助科研通管家采纳,获得10
23秒前
23秒前
彭于晏应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得50
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
Orange应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
李健应助科研通管家采纳,获得10
23秒前
李爱国应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295760
求助须知:如何正确求助?哪些是违规求助? 4445117
关于积分的说明 13835465
捐赠科研通 4329601
什么是DOI,文献DOI怎么找? 2376742
邀请新用户注册赠送积分活动 1372009
关于科研通互助平台的介绍 1337360