A Topic-Based Segmentation Model for Identifying Segment-Level Drivers of Star Ratings from Unstructured Text Reviews

分割 明星(博弈论) 计算机科学 自然语言处理 心理学 人工智能 数学 数学分析
作者
Sunghoon Kim,Sanghak Lee,Robert McCulloch
出处
期刊:Journal of Marketing Research [SAGE Publishing]
卷期号:61 (6): 1132-1151 被引量:2
标识
DOI:10.1177/00222437241246752
摘要

Online reviews provide rich information on customer satisfaction, displaying various numeric ratings as well as detailed explanations presented in written form. However, analyzing such data is challenging due to the unstructured nature of text. This article introduces a novel machine-learning method for identifying interpretable key drivers of star ratings from text reviews, which might vary across segments. By adopting the Ising model prior to account for dependence between words, the model simultaneously achieves segmentation, identifies segment-level key topics (i.e., groups of frequently co-occurring words), and estimates the impacts of the selected words on the ratings. The authors first demonstrate that the proposed model successfully identifies segment-specific key drivers of customer satisfaction using illustrative simulated review data. Then, the authors utilize real-world reviews from Yelp for empirical applications. When applied to online reviews of 5,241 Arizona-based restaurants, the model identifies three distinct restaurant segments, each characterized by three to five important topics. The model's performance is evaluated against six benchmark models, encompassing various topic models and latent class regression with variable selection. The comparison results emphasize the proposed model's unique advantages in prediction, interpretability, and handling heterogeneity. Additionally, the authors demonstrate the applicability of the model in examining customer segmentation for individual restaurants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干的山雁完成签到 ,获得积分10
刚刚
YSY发布了新的文献求助10
刚刚
淡然靖柔完成签到,获得积分10
1秒前
ananan完成签到 ,获得积分10
2秒前
yhy完成签到,获得积分10
3秒前
mp5完成签到,获得积分10
5秒前
香蕉觅云应助飘雪采纳,获得10
6秒前
轻松的鑫完成签到 ,获得积分10
7秒前
英俊的铭应助YSY采纳,获得10
7秒前
香蕉秋柳发布了新的文献求助20
7秒前
8秒前
执着幻桃完成签到,获得积分10
9秒前
ZKcrane完成签到,获得积分10
9秒前
LonelyCMA完成签到 ,获得积分0
10秒前
12秒前
苑世朝发布了新的文献求助10
13秒前
海城好人完成签到,获得积分10
14秒前
记忆完成签到,获得积分10
15秒前
苹果诗筠发布了新的文献求助10
16秒前
jianrobsim完成签到,获得积分10
16秒前
VISIN发布了新的文献求助100
16秒前
zhangyx完成签到 ,获得积分10
17秒前
jianrobsim发布了新的文献求助10
19秒前
19秒前
alexlpb完成签到,获得积分0
20秒前
yy完成签到,获得积分10
22秒前
八八发布了新的文献求助40
22秒前
carbon完成签到,获得积分10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
小马甲应助科研通管家采纳,获得10
23秒前
所所应助科研通管家采纳,获得10
23秒前
916应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
CyrusSo524应助科研通管家采纳,获得10
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
24秒前
SciGPT应助CH采纳,获得10
24秒前
丁老三完成签到 ,获得积分10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781024
求助须知:如何正确求助?哪些是违规求助? 3326438
关于积分的说明 10227265
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669535
邀请新用户注册赠送积分活动 799095
科研通“疑难数据库(出版商)”最低求助积分说明 758734