Multilabel Feature Selection via Shared Latent Sublabel Structure and Simultaneous Orthogonal Basis Clustering

聚类分析 计算机科学 人工智能 数据挖掘 模式识别(心理学) 概率潜在语义分析 冗余(工程) 操作系统
作者
Ronghua Shang,Jingyu Zhong,Weitong Zhang,Songhua Xu,Yangyang Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (3): 5288-5303 被引量:15
标识
DOI:10.1109/tnnls.2024.3382911
摘要

Multilabel feature selection solves the dimension distress of high-dimensional multilabel data by selecting the optimal subset of features. Noisy and incomplete labels of raw multilabel data hinder the acquisition of label-guided information. In existing approaches, mapping the label space to a low-dimensional latent space by semantic decomposition to mitigate label noise is considered an effective strategy. However, the decomposed latent label space contains redundant label information, which misleads the capture of potential label relevance. To eliminate the effect of redundant information on the extraction of latent label correlations, a novel method named SLOFS via shared latent sublabel structure and simultaneous orthogonal basis clustering for multilabel feature selection is proposed. First, a latent orthogonal base structure shared (LOBSS) term is engineered to guide the construction of a redundancy-free latent sublabel space via the separated latent clustering center structure. The LOBSS term simultaneously retains latent sublabel information and latent clustering center structure. Moreover, the structure and relevance information of nonredundant latent sublabels are fully explored. The introduction of graph regularization ensures structural consistency in the data space and latent sublabels, thus helping the feature selection process. SLOFS employs a dynamic sublabel graph to obtain a high-quality sublabel space and uses regularization to constrain label correlations on dynamic sublabel projections. Finally, an effective convergence provable optimization scheme is proposed to solve the SLOFS method. The experimental studies on the 18 datasets demonstrate that the presented method performs consistently better than previous feature selection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
偶然的风41177完成签到,获得积分10
1秒前
虚心的飞鸟完成签到 ,获得积分10
2秒前
Zhengzy发布了新的文献求助30
3秒前
糊涂的惠发布了新的文献求助10
7秒前
大模型应助zoie0809采纳,获得10
10秒前
星辰大海应助荀语山采纳,获得10
13秒前
1234567xjy完成签到,获得积分10
16秒前
此去经年完成签到 ,获得积分10
17秒前
18秒前
slr关闭了slr文献求助
18秒前
大模型应助机智访琴采纳,获得10
20秒前
热心乌完成签到,获得积分0
21秒前
小寒完成签到,获得积分10
21秒前
小马甲应助栾栾采纳,获得10
22秒前
小寒发布了新的文献求助10
24秒前
大胖小子完成签到,获得积分10
30秒前
CipherSage应助Leisure_Lee采纳,获得10
31秒前
举个栗子8完成签到 ,获得积分10
32秒前
Amosummer完成签到,获得积分10
33秒前
糊涂的惠完成签到,获得积分10
34秒前
Tim完成签到,获得积分10
35秒前
凌凌漆发布了新的文献求助10
36秒前
37秒前
Tim发布了新的文献求助10
38秒前
40秒前
顺心的筮完成签到,获得积分10
43秒前
45秒前
机智访琴发布了新的文献求助10
46秒前
47秒前
凌凌漆完成签到,获得积分10
48秒前
49秒前
Coco完成签到,获得积分10
50秒前
追寻之云发布了新的文献求助10
51秒前
您好发布了新的文献求助10
52秒前
lowry发布了新的文献求助10
55秒前
56秒前
57秒前
59秒前
Axel完成签到,获得积分10
1分钟前
米兰达完成签到 ,获得积分0
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Mortality and adverse events of special interest with intravenous belimumab for adults with active, autoantibody-positive systemic lupus erythematosus (BASE): a multicentre, double-blind, randomised, placebo-controlled, phase 4 trial 390
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838427
求助须知:如何正确求助?哪些是违规求助? 3380725
关于积分的说明 10515658
捐赠科研通 3100360
什么是DOI,文献DOI怎么找? 1707439
邀请新用户注册赠送积分活动 821733
科研通“疑难数据库(出版商)”最低求助积分说明 772930