A Machine Learning Algorithm Facilitates Prognosis Prediction and Treatment Selection for Barcelona Clinic Liver Cancer Stage C Hepatocellular Carcinoma

肝细胞癌 医学 内科学 肝癌 无容量 肿瘤科 队列 贝伐单抗 阶段(地层学) 算法 癌症 接收机工作特性 联合疗法 机器学习 胃肠病学 化疗 免疫疗法 生物 古生物学 计算机科学
作者
Ji Won Han,Soon Kyu Lee,Jung Hyun Kwon,Soon Woo Nam,Hyun Yang,Si Hyun Bae,Ji H. Kim,Heechul Nam,Chang Wook Kim,Hae Lim Lee,Hee Yeon Kim,Sung Won Lee,Ahlim Lee,U I. Chang,Do Seon Song,Seok-Hwan Kim,Myeong Jun Song,Pil Soo Sung,Jong Young Choi,Seung Kew Yoon
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:30 (13): 2812-2821 被引量:13
标识
DOI:10.1158/1078-0432.ccr-23-3978
摘要

Abstract Purpose: Given its heterogeneity and diverse clinical outcomes, precise subclassification of Barcelona Clinic Liver Cancer stage C (BCLC-C) hepatocellular carcinoma (HCC) is required for appropriately determining patient prognosis and selecting treatment. Experimental Design: We recruited 2,626 patients with BCLC-C HCC from multiple centers, comprising training/test (n = 1,693) and validation cohorts (n = 933). The XGBoost model was chosen for maximum performance among the machine learning (ML) models. Patients were categorized into low-, intermediate-, high-, and very high-risk subgroups based on the estimated prognosis, and this subclassification was named the CLAssification via Machine learning of BCLC-C (CLAM-C). Results: The areas under the receiver operating characteristic curve of the CLAM-C for predicting the 6-, 12-, and 24-month survival of patients with BCLC-C were 0.800, 0.831, and 0.715, respectively—significantly higher than those of the conventional models, which were consistent in the validation cohort. The four subgroups had significantly different median overall survivals, and this difference was maintained among various patient subgroups and treatment modalities. Immune-checkpoint inhibitors and transarterial therapies were associated with significantly better survival than tyrosine kinase inhibitors (TKI) in the low- and intermediate-risk subgroups. In cases with first-line systemic therapy, the CLAM-C identified atezolizumab–bevacizumab as the best therapy, particularly in the high-risk group. In cases with later-line systemic therapy, nivolumab had better survival than TKIs in the low-to-intermediate-risk subgroup, whereas TKIs had better survival in the high- to very high-risk subgroup. Conclusions: ML modeling effectively subclassified patients with BCLC-C HCC, potentially aiding treatment allocation. Our study underscores the potential utilization of ML modeling in terms of prognostication and treatment allocation in patients with BCLC-C HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云枝发布了新的文献求助10
1秒前
1秒前
bkagyin应助kk采纳,获得10
1秒前
2秒前
2秒前
典雅的平松完成签到,获得积分10
2秒前
水电费完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
ppp完成签到,获得积分10
3秒前
华仔应助依然采纳,获得10
3秒前
Jasper应助不想看文献采纳,获得10
4秒前
4秒前
Misaka发布了新的文献求助10
4秒前
乐乐乐完成签到,获得积分10
4秒前
4秒前
十六发布了新的文献求助10
4秒前
小Z发布了新的文献求助10
5秒前
5秒前
科研通AI6应助Fionaaaaa_采纳,获得10
6秒前
6秒前
6秒前
科目三应助水电费采纳,获得10
6秒前
miaolingcool发布了新的文献求助10
7秒前
7秒前
NexusExplorer应助光亮的莺采纳,获得10
7秒前
7秒前
云枝完成签到,获得积分10
8秒前
8秒前
领导范儿应助哈哈哈采纳,获得30
8秒前
王ccccc完成签到,获得积分10
8秒前
9秒前
pierchong发布了新的文献求助10
9秒前
归零儿完成签到,获得积分10
9秒前
9秒前
林夏完成签到,获得积分10
9秒前
简忆完成签到,获得积分10
9秒前
小言发布了新的文献求助10
10秒前
Ztx完成签到,获得积分10
10秒前
十六完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405038
求助须知:如何正确求助?哪些是违规求助? 4523317
关于积分的说明 14093145
捐赠科研通 4437067
什么是DOI,文献DOI怎么找? 2435432
邀请新用户注册赠送积分活动 1427659
关于科研通互助平台的介绍 1406000