Explore the value of carotid ultrasound radiomics nomogram in predicting ischemic stroke risk in patients with type 2 diabetes mellitus

医学 列线图 糖尿病 冲程(发动机) 心脏病学 内科学 2型糖尿病 无线电技术 缺血性中风 超声波 放射科 缺血 内分泌学 机械工程 工程类
作者
Yusen Liu,Ying Kong,Yanhong Yan,Pinjing Hui
出处
期刊:Frontiers in Endocrinology [Frontiers Media]
卷期号:15 被引量:8
标识
DOI:10.3389/fendo.2024.1357580
摘要

Background and objective Type 2 Diabetes Mellitus (T2DM) with insulin resistance (IR) is prone to damage the vascular endothelial, leading to the formation of vulnerable carotid plaques and increasing ischemic stroke (IS) risk. The purpose of this study is to develop a nomogram model based on carotid ultrasound radiomics for predicting IS risk in T2DM patients. Methods 198 T2DM patients were enrolled and separated into study and control groups based on IS history. After manually delineating carotid plaque region of interest (ROI) from images, radiomics features were identified and selected using the least absolute shrinkage and selection operator (LASSO) regression to calculate the radiomics score (RS). A combinatorial logistic machine learning model and nomograms were created using RS and clinical features like the triglyceride-glucose index. The three models were assessed using area under curve (AUC) and decision curve analysis (DCA). Results Patients were divided into the training set and the testing set by the ratio of 0.7. 4 radiomics features were selected. RS and clinical variables were all statically significant in the training set and were used to create a combination model and a prediction nomogram. The combination model (radiomics + clinical nomogram) had the largest AUC in both the training set and the testing set (0.898 and 0.857), and DCA analysis showed that it had a higher overall net benefit compared to the other models. Conclusions This study created a carotid ultrasound radiomics machine-learning-based IS risk nomogram for T2DM patients with carotid plaques. Its diagnostic performance and clinical prediction capabilities enable accurate, convenient, and customized medical care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
跳跃桃子完成签到 ,获得积分10
1秒前
张瓜子完成签到,获得积分20
1秒前
1秒前
lala完成签到,获得积分10
2秒前
2秒前
安妮完成签到 ,获得积分10
2秒前
无情听南完成签到,获得积分10
2秒前
Tao发布了新的文献求助10
2秒前
缥缈冰珍完成签到 ,获得积分10
2秒前
3秒前
cyj完成签到,获得积分10
4秒前
YMP完成签到,获得积分20
4秒前
jd发布了新的文献求助10
4秒前
4秒前
5秒前
鲸鱼完成签到,获得积分10
5秒前
jj158完成签到,获得积分10
5秒前
林天完成签到,获得积分10
5秒前
7秒前
袁寒烟完成签到,获得积分10
7秒前
斯文问旋完成签到,获得积分10
7秒前
岁月轮回完成签到,获得积分10
8秒前
蘑菇完成签到,获得积分10
8秒前
Ricardo完成签到,获得积分10
9秒前
10秒前
Fall发布了新的文献求助10
11秒前
11秒前
jj158发布了新的文献求助10
11秒前
夹夹发布了新的文献求助10
12秒前
微风打了烊完成签到 ,获得积分10
12秒前
123123完成签到,获得积分10
12秒前
minus完成签到,获得积分10
13秒前
wangxianjin20完成签到,获得积分10
13秒前
科研通AI2S应助亨特采纳,获得10
13秒前
Aurora完成签到,获得积分10
13秒前
13秒前
14秒前
灵巧的采蓝完成签到,获得积分20
14秒前
科研通AI5应助yeye采纳,获得10
15秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841198
求助须知:如何正确求助?哪些是违规求助? 3383176
关于积分的说明 10528587
捐赠科研通 3103166
什么是DOI,文献DOI怎么找? 1709180
邀请新用户注册赠送积分活动 822971
科研通“疑难数据库(出版商)”最低求助积分说明 773733