Denoising Seismic Waveforms Using a Wavelet-Transform-Based Machine-Learning Method

波形 计算机科学 降噪 噪音(视频) 人工智能 小波 模式识别(心理学) 信号(编程语言) 卷积神经网络 离散小波变换 小波变换 算法 语音识别 电信 图像(数学) 雷达 程序设计语言
作者
Louis Quinones,Rigobert Tibi
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society of America]
卷期号:114 (4): 1777-1788 被引量:1
标识
DOI:10.1785/0120230304
摘要

ABSTRACT Seismic waveform data recorded at stations can be thought of as a superposition of the signal from a source of interest and noise from other sources. Frequency-based filtering methods for waveform denoising do not result in desired outcomes when the targeted signal and noise occupy similar frequency bands. Recently, denoising techniques based on deep-learning convolutional neural networks (CNNs), in which a recorded waveform is decomposed into signal and noise components, have led to improved results. These CNN methods, which use short-time Fourier transform representations of the time series, provide signal and noise masks for the input waveform. These masks are used to create denoised signal and designaled noise waveforms, respectively. However, advancements in the field of image denoising have shown the benefits of incorporating discrete wavelet transforms (DWTs) into CNN architectures to create multilevel wavelet CNN (MWCNN) models. The MWCNN model preserves the details of the input due to the good time–frequency localization of the DWT. Here, we use a data set of over 382,000 constructed seismograms recorded by the University of Utah Seismograph Stations network to compare the performance of CNN and MWCNN-based denoising models. Evaluation of both models on constructed test data shows that the MWCNN model outperforms the CNN model in the ability to recover the ground-truth signal component in terms of both waveform similarity and preservation of amplitude information. Model evaluation of real-world data shows that both the CNN and MWCNN models outperform standard band-pass filtering (BPF; average improvement in signal-to-noise ratio of 9.6 and 19.7 dB, respectively, with respect to BPF). Evaluation of continuous data suggests the MWCNN denoiser can improve both signal detection capabilities and phase arrival time estimates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
解杰完成签到,获得积分10
2秒前
零蝉完成签到 ,获得积分10
2秒前
3秒前
Liyipu发布了新的文献求助10
4秒前
听话的晓筠完成签到,获得积分20
5秒前
2333发布了新的文献求助10
5秒前
5秒前
HJY发布了新的文献求助20
7秒前
7秒前
8秒前
冰魂应助January采纳,获得10
9秒前
bobo发布了新的文献求助10
10秒前
iook发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
CX发布了新的文献求助10
13秒前
15秒前
bobo发布了新的文献求助10
16秒前
流流124141发布了新的文献求助10
16秒前
我是老大应助iook采纳,获得10
17秒前
18秒前
18秒前
流星完成签到,获得积分10
20秒前
坛子发布了新的文献求助10
21秒前
广州东站完成签到,获得积分10
22秒前
22秒前
echoxq发布了新的文献求助10
22秒前
李健的小迷弟应助Tempo采纳,获得10
22秒前
端茶倒水发布了新的文献求助10
23秒前
24秒前
25秒前
香蕉觅云应助半柚采纳,获得10
25秒前
铜锣湾小研仔应助yingw采纳,获得10
26秒前
科研通AI5应助HJY采纳,获得10
27秒前
Ava应助Falling采纳,获得10
27秒前
思源应助echoxq采纳,获得10
29秒前
wuyufei关注了科研通微信公众号
30秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802551
求助须知:如何正确求助?哪些是违规求助? 3348222
关于积分的说明 10337161
捐赠科研通 3064171
什么是DOI,文献DOI怎么找? 1682425
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764010