Mobile-friendly skin lesion detection using an attention-driven lightweight model

计算机科学 加权 管道(软件) 班级(哲学) 人工智能 模式识别(心理学) 机器学习 功能(生物学) 生物 医学 进化生物学 放射科 程序设计语言
作者
Mingzhe Hu,Xiaofeng Yang
标识
DOI:10.1117/12.3006822
摘要

This study presents a lightweight pipeline for skin lesion detection, addressing the challenges posed by imbalanced class distribution and subtle or atypical appearances of some lesions. The pipeline is built around a lightweight model that leverages ghosted features and the DFC attention mechanism to reduce computational complexity while maintaining high performance. The model was trained on the HAM10000 dataset, which includes various types of skin lesions. To address the class imbalance in the dataset, the synthetic minority over-sampling technique and various image augmentation techniques were used. The model also incorporates a knowledge-based loss weighting technique, which assigns different weights to the loss function at the class level and the instance level, helping the model focus on minority classes and challenging samples. This technique involves assigning different weights to the loss function on two levels - the class level and the instance level. By applying appropriate loss weights, the model pays more attention to the minority classes and challenging samples, thus improving its ability to correctly detect and classify different skin lesions. The model achieved an accuracy of 92.4%, a precision of 84.2%, a recall of 86.9%, a f1-score of 85.4% with particularly strong performance in identifying Benign Keratosis-like Lesions (BKL) and Nevus (NV). Despite its superior performance, the model's computational cost is considerably lower than some models with less accuracy, making it an optimal solution for real-world applications where both accuracy and efficiency are essential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
qqq完成签到,获得积分10
2秒前
2秒前
2秒前
Owen应助蜂鸟5156采纳,获得10
2秒前
林林发布了新的文献求助10
2秒前
薛定饿死了完成签到,获得积分10
3秒前
orange发布了新的文献求助10
3秒前
chruse发布了新的文献求助10
3秒前
4秒前
小明ing完成签到,获得积分20
4秒前
4秒前
科研通AI6应助huhdcid采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
xy发布了新的文献求助10
7秒前
CX发布了新的文献求助10
7秒前
keyab发布了新的文献求助10
7秒前
周爱李发布了新的文献求助10
8秒前
8秒前
光影发布了新的文献求助10
9秒前
颇黎发布了新的文献求助10
9秒前
数值分析完成签到,获得积分10
9秒前
范春艳发布了新的文献求助30
9秒前
蔡蔡蔡发布了新的文献求助10
10秒前
123发布了新的文献求助10
10秒前
lifang完成签到 ,获得积分10
11秒前
11秒前
11秒前
12秒前
12秒前
科研通AI6应助殷勤的豆芽采纳,获得10
12秒前
爆米花应助LLL采纳,获得10
13秒前
斯文败类应助可以2采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478702
求助须知:如何正确求助?哪些是违规求助? 4580347
关于积分的说明 14374100
捐赠科研通 4508789
什么是DOI,文献DOI怎么找? 2470906
邀请新用户注册赠送积分活动 1457568
关于科研通互助平台的介绍 1431472