Clinical Utility of a CT-based AI Prognostic Model for Segmentectomy in Non–Small Cell Lung Cancer

医学 肺癌 放射科 癌症 计算机断层摄影术 内科学 肿瘤科
作者
Kwon Joong Na,Young Tae Kim,Jin Mo Goo,Hyungjin Kim
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (1) 被引量:4
标识
DOI:10.1148/radiol.231793
摘要

Background Currently, no tool exists for risk stratification in patients undergoing segmentectomy for non–small cell lung cancer (NSCLC). Purpose To develop and validate a deep learning (DL) prognostic model using preoperative CT scans and clinical and radiologic information for risk stratification in patients with clinical stage IA NSCLC undergoing segmentectomy. Materials and Methods In this single-center retrospective study, transfer learning of a pretrained model was performed for survival prediction in patients with clinical stage IA NSCLC who underwent lobectomy from January 2008 to March 2017. The internal set was divided into training, validation, and testing sets based on the assignments from the pretraining set. The model was tested on an independent test set of patients with clinical stage IA NSCLC who underwent segmentectomy from January 2010 to December 2017. Its prognostic performance was analyzed using the time-dependent area under the receiver operating characteristic curve (AUC), sensitivity, and specificity for freedom from recurrence (FFR) at 2 and 4 years and lung cancer–specific survival and overall survival at 4 and 6 years. The model sensitivity and specificity were compared with those of the Japan Clinical Oncology Group (JCOG) eligibility criteria for sublobar resection. Results The pretraining set included 1756 patients. Transfer learning was performed in an internal set of 730 patients (median age, 63 years [IQR, 56–70 years]; 366 male), and the segmentectomy test set included 222 patients (median age, 65 years [IQR, 58–71 years]; 114 male). The model performance for 2-year FFR was as follows: AUC, 0.86 (95% CI: 0.76, 0.96); sensitivity, 87.4% (7.17 of 8.21 patients; 95% CI: 59.4, 100); and specificity, 66.7% (136 of 204 patients; 95% CI: 60.2, 72.8). The model showed higher sensitivity for FFR than the JCOG criteria (87.4% vs 37.6% [3.08 of 8.21 patients], P = .02), with similar specificity. Conclusion The CT-based DL model identified patients at high risk among those with clinical stage IA NSCLC who underwent segmentectomy, outperforming the JCOG criteria. © RSNA, 2024 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hhnicai发布了新的文献求助10
1秒前
1秒前
1秒前
勤奋的千山完成签到,获得积分10
2秒前
纯情的沂发布了新的文献求助10
4秒前
快乐蘑菇完成签到,获得积分10
4秒前
wg言发布了新的文献求助10
4秒前
4秒前
浮游应助现代含桃采纳,获得10
4秒前
邺yu完成签到,获得积分10
4秒前
缓慢寒梦发布了新的文献求助10
5秒前
5秒前
aceilnor完成签到,获得积分10
5秒前
Nathan发布了新的文献求助10
5秒前
寒冷半梦完成签到,获得积分10
5秒前
海绵宝宝发布了新的文献求助10
5秒前
8秒前
sansan完成签到 ,获得积分10
8秒前
研友_8RlG1n发布了新的文献求助20
9秒前
orixero应助科研通管家采纳,获得10
9秒前
多情易蓉应助科研通管家采纳,获得30
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
10秒前
10秒前
情怀应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
香蕉觅云应助cj采纳,获得10
10秒前
施昊焱应助科研通管家采纳,获得20
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
10秒前
GIINJIU应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
山山而川发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Benefit of Whole-Pelvis Radiation for Patients With Muscle-Invasive Bladder Cancer: An Inverse Probability Treatment Weighted Analysis 510
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4702872
求助须知:如何正确求助?哪些是违规求助? 4070615
关于积分的说明 12586543
捐赠科研通 3770964
什么是DOI,文献DOI怎么找? 2082701
邀请新用户注册赠送积分活动 1110066
科研通“疑难数据库(出版商)”最低求助积分说明 988073