Clinical Utility of a CT-based AI Prognostic Model for Segmentectomy in Non–Small Cell Lung Cancer

医学 肺癌 放射科 癌症 计算机断层摄影术 内科学 肿瘤科
作者
Kwon Joong Na,Young Tae Kim,Jin Mo Goo,Hyungjin Kim
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (1) 被引量:4
标识
DOI:10.1148/radiol.231793
摘要

Background Currently, no tool exists for risk stratification in patients undergoing segmentectomy for non–small cell lung cancer (NSCLC). Purpose To develop and validate a deep learning (DL) prognostic model using preoperative CT scans and clinical and radiologic information for risk stratification in patients with clinical stage IA NSCLC undergoing segmentectomy. Materials and Methods In this single-center retrospective study, transfer learning of a pretrained model was performed for survival prediction in patients with clinical stage IA NSCLC who underwent lobectomy from January 2008 to March 2017. The internal set was divided into training, validation, and testing sets based on the assignments from the pretraining set. The model was tested on an independent test set of patients with clinical stage IA NSCLC who underwent segmentectomy from January 2010 to December 2017. Its prognostic performance was analyzed using the time-dependent area under the receiver operating characteristic curve (AUC), sensitivity, and specificity for freedom from recurrence (FFR) at 2 and 4 years and lung cancer–specific survival and overall survival at 4 and 6 years. The model sensitivity and specificity were compared with those of the Japan Clinical Oncology Group (JCOG) eligibility criteria for sublobar resection. Results The pretraining set included 1756 patients. Transfer learning was performed in an internal set of 730 patients (median age, 63 years [IQR, 56–70 years]; 366 male), and the segmentectomy test set included 222 patients (median age, 65 years [IQR, 58–71 years]; 114 male). The model performance for 2-year FFR was as follows: AUC, 0.86 (95% CI: 0.76, 0.96); sensitivity, 87.4% (7.17 of 8.21 patients; 95% CI: 59.4, 100); and specificity, 66.7% (136 of 204 patients; 95% CI: 60.2, 72.8). The model showed higher sensitivity for FFR than the JCOG criteria (87.4% vs 37.6% [3.08 of 8.21 patients], P = .02), with similar specificity. Conclusion The CT-based DL model identified patients at high risk among those with clinical stage IA NSCLC who underwent segmentectomy, outperforming the JCOG criteria. © RSNA, 2024 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
remoon1104完成签到,获得积分10
刚刚
1秒前
quickerrun应助小M采纳,获得30
1秒前
zambajia完成签到,获得积分10
3秒前
wen发布了新的文献求助10
5秒前
伶俐安萱完成签到,获得积分10
5秒前
8秒前
AA完成签到,获得积分10
9秒前
10秒前
W29完成签到 ,获得积分10
10秒前
光亮白山完成签到 ,获得积分10
10秒前
whh123发布了新的文献求助10
13秒前
13秒前
杨白秋完成签到,获得积分10
14秒前
14秒前
14秒前
TOMORI酱发布了新的文献求助100
17秒前
Orange应助害羞便当采纳,获得10
18秒前
nnnn完成签到,获得积分10
20秒前
共享精神应助hhhhhh采纳,获得10
20秒前
mrjohn完成签到,获得积分10
21秒前
脑洞疼应助keyanfeiwu采纳,获得10
21秒前
科研通AI2S应助ssl采纳,获得30
21秒前
22秒前
23秒前
六个核桃完成签到,获得积分10
23秒前
sky发布了新的文献求助10
26秒前
27秒前
28秒前
30秒前
30秒前
30秒前
阿哲完成签到 ,获得积分10
31秒前
kunny完成签到 ,获得积分10
32秒前
成就嚓茶发布了新的文献求助10
32秒前
Sean发布了新的文献求助10
33秒前
34秒前
搜集达人应助竹马子采纳,获得10
34秒前
斜玉完成签到,获得积分10
35秒前
lll完成签到,获得积分10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779530
求助须知:如何正确求助?哪些是违规求助? 3325020
关于积分的说明 10220974
捐赠科研通 3040147
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522