A Fuzzy Graph Convolutional Network Model for Sentence-Level Sentiment Analysis

邻接矩阵 计算机科学 Softmax函数 模糊逻辑 邻接表 图形 判决 人工智能 代表(政治) 模棱两可 数据挖掘 理论计算机科学 卷积神经网络 算法 政治 政治学 法学 程序设计语言
作者
Huyen Trang Phan,Ngoc Thanh Nguyên
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (5): 2953-2965 被引量:10
标识
DOI:10.1109/tfuzz.2024.3364694
摘要

Sentiment analysis in the text plays a more and more significant role in many systems, e.g., sentence-level sentiment analysis (SLSA) in recommender and decision-making systems. Various methods have been developed to improve the performance of SLSA, the newest as graph convolutional networks (GCNs)-based methods with promising accuracy. However, it often happens that many sentences in the text contain high ambiguity of sentiment. GCNs are not capable of capturing these inherent ambiguities with performance. Meanwhile, the fuzzy logic theory can improve knowledge representation under uncertainty. These facts motivate us to propose a novel SLSA method by integrating fuzzy logic into GCNs, called the fuzzy graph convolutional network (FGCN). In this novel model, the BERT+BiLSTM model is first used to convert sentences into a matrix of contextualized vectors. Second, the fuzzy membership function is integrated into the contextualized matrix to transform it into the fuzzy contextualized representation. Third, the sentence adjacency matrix combines the syntactic information extracted from the dependency tree. Fourth, the fuzzy membership function is continuously used to transform the sentence adjacency matrix into the fuzzy adjacency matrix. After that, the defuzzy membership function is used to transform the fuzzy adjacency matrix to continuous values before deriving significant features. Next, the fuzzy adjacency matrix and the fuzzy contextualized representation are concatenated to create the final representation and fed into GCN layers to capture the high-level features of the sentence. Finally, the sentiment classifier is constructed to learn the output distribution by applying the softmax function over the final representation. Unlike conventional GCNs, the FGCN integrates fuzzy membership functions into graph convolutional layers to reduce the ambiguities of sentiment in sentence representation. This enables to achieve efficiently extracting high level sentiment features in sentences. The experimental results on benchmark datasets prove that the FGCN can enhance the performance in terms of accuracy and $F_{1}$ score of SLSA in comparison with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lqz07完成签到,获得积分10
刚刚
在水一方应助hhh采纳,获得10
1秒前
2秒前
小蘑菇应助执着的钢笔采纳,获得10
2秒前
3秒前
斯文败类应助阳光的南珍采纳,获得30
5秒前
5秒前
BG发布了新的文献求助10
6秒前
乐于助人大好人完成签到 ,获得积分10
6秒前
6秒前
BCS完成签到,获得积分10
8秒前
张少良发布了新的文献求助10
9秒前
勇敢肥猫发布了新的文献求助10
10秒前
petli发布了新的文献求助10
10秒前
华仔应助小肆采纳,获得10
11秒前
11秒前
我是老大应助WANGJD采纳,获得10
13秒前
积极的睫毛完成签到,获得积分10
14秒前
15秒前
15秒前
完美世界应助勇敢肥猫采纳,获得10
16秒前
缥缈耷完成签到,获得积分10
16秒前
积极的台灯应助obscure采纳,获得10
17秒前
我是老大应助惊鸿宴采纳,获得10
17秒前
aaron完成签到,获得积分10
19秒前
学术laji完成签到 ,获得积分10
19秒前
20秒前
minami64发布了新的文献求助30
21秒前
慕青应助沐晴采纳,获得10
22秒前
FashionBoy应助深情傲柔采纳,获得10
23秒前
刻苦的达完成签到,获得积分10
24秒前
Akim应助忧伤的幼荷采纳,获得10
24秒前
肖耶啵完成签到,获得积分10
25秒前
25秒前
26秒前
26秒前
小肆发布了新的文献求助10
26秒前
共享精神应助欣然采纳,获得10
27秒前
29秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Quantum Sensors Market 2025-2045: Technology, Trends, Players, Forecasts 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3914613
求助须知:如何正确求助?哪些是违规求助? 3459999
关于积分的说明 10909045
捐赠科研通 3186645
什么是DOI,文献DOI怎么找? 1761551
邀请新用户注册赠送积分活动 852183
科研通“疑难数据库(出版商)”最低求助积分说明 793201