A Fuzzy Graph Convolutional Network Model for Sentence-Level Sentiment Analysis

邻接矩阵 计算机科学 Softmax函数 模糊逻辑 邻接表 图形 判决 人工智能 代表(政治) 模棱两可 数据挖掘 理论计算机科学 卷积神经网络 算法 政治 政治学 法学 程序设计语言
作者
Huyen Trang Phan,Ngoc Thanh Nguyên
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (5): 2953-2965 被引量:17
标识
DOI:10.1109/tfuzz.2024.3364694
摘要

Sentiment analysis in the text plays a more and more significant role in many systems, e.g., sentence-level sentiment analysis (SLSA) in recommender and decision-making systems. Various methods have been developed to improve the performance of SLSA, the newest as graph convolutional networks (GCNs)-based methods with promising accuracy. However, it often happens that many sentences in the text contain high ambiguity of sentiment. GCNs are not capable of capturing these inherent ambiguities with performance. Meanwhile, the fuzzy logic theory can improve knowledge representation under uncertainty. These facts motivate us to propose a novel SLSA method by integrating fuzzy logic into GCNs, called the fuzzy graph convolutional network (FGCN). In this novel model, the BERT+BiLSTM model is first used to convert sentences into a matrix of contextualized vectors. Second, the fuzzy membership function is integrated into the contextualized matrix to transform it into the fuzzy contextualized representation. Third, the sentence adjacency matrix combines the syntactic information extracted from the dependency tree. Fourth, the fuzzy membership function is continuously used to transform the sentence adjacency matrix into the fuzzy adjacency matrix. After that, the defuzzy membership function is used to transform the fuzzy adjacency matrix to continuous values before deriving significant features. Next, the fuzzy adjacency matrix and the fuzzy contextualized representation are concatenated to create the final representation and fed into GCN layers to capture the high-level features of the sentence. Finally, the sentiment classifier is constructed to learn the output distribution by applying the softmax function over the final representation. Unlike conventional GCNs, the FGCN integrates fuzzy membership functions into graph convolutional layers to reduce the ambiguities of sentiment in sentence representation. This enables to achieve efficiently extracting high level sentiment features in sentences. The experimental results on benchmark datasets prove that the FGCN can enhance the performance in terms of accuracy and $F_{1}$ score of SLSA in comparison with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博ge发布了新的文献求助10
1秒前
我是老大应助David采纳,获得10
2秒前
zy完成签到,获得积分10
3秒前
弃医从个啥完成签到,获得积分10
3秒前
阿盛发布了新的文献求助10
4秒前
汉堡包应助风之子采纳,获得10
6秒前
orange完成签到,获得积分10
7秒前
8秒前
葛儿完成签到 ,获得积分10
8秒前
大方的羊青完成签到,获得积分10
9秒前
情怀应助lanmin采纳,获得10
10秒前
12秒前
bghv发布了新的文献求助10
12秒前
浮浮世世发布了新的文献求助20
12秒前
12秒前
YYC完成签到,获得积分10
13秒前
15秒前
15秒前
15秒前
晴天完成签到 ,获得积分10
15秒前
16秒前
bravo应助科研通管家采纳,获得100
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
王星星发布了新的文献求助30
16秒前
YYC发布了新的文献求助10
17秒前
17秒前
19秒前
跳跃翠完成签到,获得积分10
21秒前
风之子发布了新的文献求助10
23秒前
伯丛筠完成签到,获得积分10
24秒前
lanmin发布了新的文献求助10
24秒前
领导范儿应助跳跃翠采纳,获得10
26秒前
27秒前
27秒前
脑洞疼应助王星星采纳,获得10
29秒前
vicky完成签到,获得积分10
30秒前
30秒前
伯丛筠发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Psychology and Work Today 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5832612
求助须知:如何正确求助?哪些是违规求助? 6073587
关于积分的说明 15585873
捐赠科研通 4951808
什么是DOI,文献DOI怎么找? 2668348
邀请新用户注册赠送积分活动 1613772
关于科研通互助平台的介绍 1568658