数学
继续
分数拉普拉斯
环面
刚度(电磁)
离散化
向量拉普拉斯算子
补语(音乐)
格子(音乐)
理论(学习稳定性)
反向
拉普拉斯算子
应用数学
纯数学
数学分析
几何学
物理
计算机科学
基因
程序设计语言
表型
声学
矢量势
磁场
互补
机器学习
量子力学
化学
生物化学
作者
Aingeru Fernández-Bertolin,Luz Roncal,Angkana Rüland
标识
DOI:10.1016/j.jfa.2024.110375
摘要
We study various qualitative and quantitative (global) unique continuation properties for the fractional discrete Laplacian. We show that while the fractional Laplacian enjoys striking rigidity properties in the form of (global) unique continuation properties, the fractional discrete Laplacian does not enjoy these in general. While discretization thus counteracts the strong rigidity properties of the continuum fractional Laplacian, by discussing quantitative forms of unique continuation, we illustrate that these properties can be recovered if exponentially small (in the lattice size) correction terms are added. In particular, this allows us to deduce stability properties for a discrete, linear inverse problem for the fractional Laplacian. We complement these observations with a transference principle and the discussion of these properties on the discrete torus.
科研通智能强力驱动
Strongly Powered by AbleSci AI