An innovative interpretable combined learning model for wind speed forecasting

可解释性 风速 风力发电 计算机科学 人工神经网络 均方误差 试验装置 集合(抽象数据类型) 自回归积分移动平均 时间序列 人工智能 机器学习 气象学 统计 数学 工程类 物理 电气工程 程序设计语言
作者
Pei Du,Dongchuan Yang,Yanzhao Li,Jianzhou Wang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:358: 122553-122553 被引量:34
标识
DOI:10.1016/j.apenergy.2023.122553
摘要

Wind energy is taken as one of the most potential green energy sources, whose accurate and stable prediction is important to improve the efficiency of wind turbines as well as to guarantee the power balance and economic dispatch of power systems and equipment safety. However, the random and fluctuating nature of wind speed poses a great risk to wind power grid connections. To address the issues of low prediction performance and lack of interpretable analysis in most past studies, this research proposes an interpretable combined learning model for wind speed time series prediction by combining linear models, different neural networks, and deep learning by introducing interpretable TFT models. To test the effectiveness of the forecasting models, the presented combined model is verified using eight wind speed datasets covering four seasons collected from two wind farms in Shaanxi, China. The experimental results show that the average root mean squared error of the one-step, two-step, and three-step predictions on the eight datasets for proposed model are 0.3448, 0.4586 and 0.6164, respectively, which are much better than the six single models and the six combined models with different strategies. And proposed model outperforms the single model and combined model in most cases, with 86.80% and 92.01% of the DM values greater than the corresponding critical values when the significance level is set to 0.01 and 0.1, respectively. Finally, the proposed model is discussed and analyzed in depth through interpretability analysis of the combined model, which further validates the potential of the model and also provides a reference for other time series forecasting studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情迎彤发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
4秒前
4秒前
zhang发布了新的文献求助10
5秒前
Wiesen发布了新的文献求助10
5秒前
453452542完成签到,获得积分10
6秒前
小龙发布了新的文献求助10
6秒前
6秒前
珉志完成签到,获得积分10
7秒前
YC完成签到,获得积分10
9秒前
今后应助Vicky采纳,获得10
9秒前
wuuw发布了新的文献求助10
9秒前
Bobby完成签到,获得积分10
9秒前
Michaelfall发布了新的文献求助30
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
wljine发布了新的文献求助30
10秒前
LTF发布了新的文献求助10
10秒前
wendy完成签到,获得积分10
11秒前
ding应助细心的天采纳,获得10
11秒前
小鲟鱼完成签到,获得积分10
12秒前
12秒前
忧心的从蓉完成签到,获得积分10
12秒前
KKK研完成签到,获得积分10
12秒前
13秒前
隐形曼青应助冷酷雪碧采纳,获得10
13秒前
xc发布了新的文献求助10
13秒前
小龙完成签到,获得积分10
13秒前
追风舞尘发布了新的文献求助30
14秒前
14秒前
14秒前
Doki完成签到,获得积分10
14秒前
科研圈外人完成签到 ,获得积分10
14秒前
小帅完成签到 ,获得积分10
15秒前
英俊的铭应助胡云晗采纳,获得10
16秒前
16秒前
传奇3应助热情迎彤采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070552
求助须知:如何正确求助?哪些是违规求助? 4291675
关于积分的说明 13371209
捐赠科研通 4111892
什么是DOI,文献DOI怎么找? 2251771
邀请新用户注册赠送积分活动 1256853
关于科研通互助平台的介绍 1189497