数学
要素(刑法)
有限元法
应用数学
牙石(牙科)
数学分析
口腔正畸科
物理
医学
政治学
法学
热力学
作者
Chunyu Chen,Xuehai Huang,Huayi Wei
摘要
.Virtual element methods (VEMs) without extrinsic stabilization in an arbitrary degree of polynomial are developed for second order elliptic problems, including a nonconforming VEM and a conforming VEM in arbitrary dimension. The key is to construct local \(H(\operatorname{div})\)-conforming macro finite element spaces such that the associated \(L^2\) projection of the gradient of virtual element functions is computable, and the \(L^2\) projector has a uniform lower bound on the gradient of virtual element function spaces in the \(L^2\) norm. Optimal error estimates are derived for these VEMs. Numerical experiments are provided to test the VEMs without extrinsic stabilization.Keywordsvirtual elementstabilizationmacro finite elementnorm equivalenceerror analysisMSC codes65N1265N2265N30
科研通智能强力驱动
Strongly Powered by AbleSci AI