Enzyme-Mineralized PVASA Hydrogels with Combined Toughness and Strength for Bone Tissue Engineering

自愈水凝胶 材料科学 韧性 生物相容性 矿化(土壤科学) 组织工程 脆性 复合材料 乙烯醇 生物医学工程 化学工程 聚合物 化学 高分子化学 有机化学 冶金 工程类 氮气 医学
作者
Guangpeng Zhang,Xinying Wang,Guolong Meng,Tingting Xu,Jun Shu,Jingwen Zhao,Jing He,Fang Wu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (1): 178-189 被引量:6
标识
DOI:10.1021/acsami.3c14006
摘要

Enzymatic mineralization is an advanced mineralization method that is often used to enhance the stiffness and strength of hydrogels, but often accompanied by brittle behavior. Moreover, the hydrogel systems with dense networks currently used for enzymatic mineralization are not ideal materials for bone repair applications. To address these issues, two usual bone repair hydrogels, poly(vinyl alcohol) (PVA) and sodium alginate (SA), were selected to form a double-network structure through repeated freeze–thawing and ionic cross-linking, followed by enzyme mineralization. The results demonstrated that both enzymatic mineralization and double-network structure improved the mechanical and biological properties and even exhibited synergistic effects. The mineralized PVASA hydrogels exhibited superior comprehensive mechanical properties, with a Young's modulus of 1.03 MPa, a storage modulus of 103 kPa, and an equilibrium swelling ratio of 132%. In particular, the PVASA hydrogel did not suffer toughness loss after mineralization, with a high toughness value of 1.86 MJ/m3. The prepared hydrogels also exhibited superior biocompatibility with a cell spreading area about 13 times that of mineralized PVA. It also effectively promoted cellular osteogenic differentiation in vitro and further promoted the formation of new bone in the femur defect region in vivo. Overall, the enzyme-mineralized PVASA hydrogel demonstrated combined strength and toughness and great potential for bone tissue engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
快冲冲冲完成签到 ,获得积分10
2秒前
英俊的铭应助通~采纳,获得10
2秒前
Moya完成签到,获得积分10
2秒前
亦雪发布了新的文献求助10
3秒前
aaaaa发布了新的文献求助10
3秒前
zzZ_完成签到,获得积分10
4秒前
4秒前
氢描氮写发布了新的文献求助10
4秒前
xxz完成签到,获得积分10
4秒前
无花果应助####采纳,获得10
4秒前
5秒前
王文菁发布了新的文献求助10
6秒前
乐乐应助通科研采纳,获得10
6秒前
orchid发布了新的文献求助30
8秒前
KScrazy完成签到,获得积分10
8秒前
fsw完成签到,获得积分10
9秒前
9秒前
安详忆雪完成签到,获得积分10
10秒前
屈屈完成签到,获得积分10
11秒前
佚名123发布了新的文献求助10
11秒前
我是老大应助等等采纳,获得10
11秒前
快乐的素完成签到,获得积分10
12秒前
FashionBoy应助圆润润呐采纳,获得10
12秒前
12秒前
13秒前
科目三应助好好好采纳,获得10
14秒前
善学以致用应助亦雪采纳,获得10
14秒前
15秒前
SciGPT应助QinQin采纳,获得10
15秒前
晗晗发布了新的文献求助10
16秒前
单纯行天完成签到,获得积分10
16秒前
小爱同学发布了新的文献求助10
17秒前
aaaaa完成签到,获得积分10
17秒前
17秒前
华国锋应助迟迟采纳,获得20
17秒前
丘比特应助AbleSpen采纳,获得10
18秒前
18秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5156914
求助须知:如何正确求助?哪些是违规求助? 4352368
关于积分的说明 13551565
捐赠科研通 4195482
什么是DOI,文献DOI怎么找? 2301109
邀请新用户注册赠送积分活动 1300961
关于科研通互助平台的介绍 1246138