SECOND-ORDER ANALYSIS OF BEAM-COLUMNS BY MACHINE LEARNING-BASED STRUCTURAL ANALYSIS THROUGH PHYSICS-INFORMED NEURAL NETWORKS

人工神经网络 计算机科学 过程(计算) 人工智能 机器学习 有限元法 算法 工程类 结构工程 操作系统
标识
DOI:10.18057/ijasc.2023.19.4.10
摘要

The second-order analysis of slender steel members could be challenging, especially when large deflection is involved. This paper proposes a novel machine learning-based structural analysis (MLSA) method for second-order analysis of beam-columns, which could be a promising alternative to the prevailing solutions using over-simplified analytical equations or traditional finite-element-based methods. The effectiveness of the conventional machine learning method heavily depends on both the qualitative and the quantitative of the provided data. However, such data are typically scarce and expensive to obtain in structural engineering practices. To address this problem, a new and explainable machine learning-based method, named Physics-informed Neural Networks (PINN), is employed, where the physical information will be utilized to orientate the learning process to create a self-supervised learning procedure, making it possible to train the neural network with few or even no predefined datasets to achieve an accurate approximation. This research extends the PINN method to the problems of second-order analysis of steel beam-columns. Detailed derivations of the governing equations, as well as the essential physical information for the training process, are given. The PINN framework and the training procedure are provided, where an adaptive loss weight control algorithm and the transfer learning technic are adopted to improve numerical efficiency. The practicability and accuracy of which are validated by four sets of verification examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
花薇Liv完成签到,获得积分10
1秒前
1秒前
2秒前
water完成签到,获得积分10
2秒前
3秒前
小熊完成签到,获得积分20
4秒前
6秒前
玛卡巴卡发布了新的文献求助10
7秒前
小八儿发布了新的文献求助10
7秒前
Yolo发布了新的文献求助10
8秒前
小熊发布了新的文献求助10
8秒前
华仔应助小宇OvO采纳,获得10
9秒前
yylqing完成签到,获得积分10
9秒前
默默白桃完成签到 ,获得积分10
11秒前
crj应助过时的又槐采纳,获得20
14秒前
罗奕芳完成签到,获得积分10
15秒前
15秒前
根号3完成签到 ,获得积分10
17秒前
18秒前
小宇OvO发布了新的文献求助10
21秒前
领导范儿应助力劈华山采纳,获得10
22秒前
Nat发布了新的文献求助10
22秒前
科研通AI2S应助迷路路人采纳,获得10
23秒前
苏苏完成签到 ,获得积分10
23秒前
23秒前
kk应助待风归采纳,获得10
23秒前
27秒前
27秒前
28秒前
29秒前
王博成发布了新的文献求助10
31秒前
32秒前
斯文败类应助xiaomu采纳,获得10
33秒前
33秒前
Ava应助虚幻豌豆采纳,获得10
35秒前
包容半鬼发布了新的文献求助10
35秒前
根根发布了新的文献求助10
36秒前
36秒前
ming发布了新的文献求助10
37秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Grammar in Action: Building comprehensive grammars of talk-in-interaction 1000
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4195187
求助须知:如何正确求助?哪些是违规求助? 3730806
关于积分的说明 11750719
捐赠科研通 3405781
什么是DOI,文献DOI怎么找? 1868570
邀请新用户注册赠送积分活动 924812
科研通“疑难数据库(出版商)”最低求助积分说明 835532