材料科学
抛光
合金
腐蚀
原电池
电偶腐蚀
冶金
表面粗糙度
磨料
化学机械平面化
电化学
锌
复合材料
电极
化学
物理化学
作者
Changjiang Qin,Jianwen Pan,Zihua Hu,Zhang Ke-chang,Rundong Shen,Shengqiang Jiang,Xiaogao Chen,Meijiao Mao
标识
DOI:10.1149/2162-8777/ad6033
摘要
To improve the surface integrity of ZA27 alloy, a method of chemical mechanical polishing (CMP) considering the galvanic corrosion at the Zn/Al interface is proposed to treat the surface of ZA27 alloy. Firstly, the electrochemical experiment is carried out to study the influence of the pH, H 2 O 2 concentration, and glycine concentration on corrosion potential between zinc and aluminum. Then the Taguchi method integrated with grey relation analysis and fuzzy inference are used to optimize the CMP parameters of ZA27 alloy. Finally, the prediction model of the MRR and surface roughness Ra is established using the mathematical regression analysis method. The experimental results showed that the minimum zinc-aluminum corrosion potential difference is 14 mV when the pH is 10, H 2 O 2 concentration is 1 wt%, and glycine concentration is 0.4 wt%. The optimum CMP parameter is the polishing pressure of 34 kPa, the polishing plate’s rotational speed of 70 rpm, and the abrasive particle concentration of 15 wt%. After polishing with the optimum CMP parameter, the MRR is 242 nm min −1 , and the surface roughness Ra is 13.91 nm. This study demonstrates that the CMP considering the galvanic corrosion at the Zn/Al interface is an effective method for treating ZA27 alloy surface.
科研通智能强力驱动
Strongly Powered by AbleSci AI