A hierarchical blockchain-enabled distributed federated learning system with model-contribution based rewarding

计算机科学 吞吐量 分布式计算 声誉 机制(生物学) 块链 激励 计算机安全 无线 社会科学 电信 认识论 哲学 社会学 经济 微观经济学
作者
Haibo Wang,Hongwei Gao,Teng Ma,Chong Li,Jing Tao
出处
期刊:Digital Communications and Networks [KeAi]
被引量:4
标识
DOI:10.1016/j.dcan.2024.07.002
摘要

Distributed Federated Learning (DFL) technology enables participants to cooperatively train a shared model while preserving the privacy of their local data sets, making it a desirable solution for decentralized and privacy-preserving Web3 scenarios. However, DFL faces incentive and security challenges in the decentralized framework. To address these issues, this paper presents a Hierarchical Blockchain-enabled DFL (HBDFL) system, which provides a generic solution framework for the DFL-related applications. The proposed system consists of four major components, including a model contribution-based reward mechanism, a Proof of Elapsed Time and Accuracy (PoETA) consensus algorithm, a Distributed Reputation-based Verification Mechanism (DRTM) and an Accuracy-Dependent Throughput Management (ADTM) mechanism. The model contribution-based rewarding mechanism incentivizes network nodes to train models with their local datasets, while the PoETA consensus algorithm optimizes the tradeoff between the shared model accuracy and system throughput. The DRTM improves the system efficiency in consensus, and the ADTM mechanism guarantees that the throughput performance remains within a predefined range while improving the shared model accuracy. The performance of the proposed HBDFL system is evaluated by numerical simulations, which show that the system improves the accuracy of the shared model while maintaining high throughput and ensuring security.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗YF完成签到,获得积分10
1秒前
Lucas应助WEN采纳,获得10
1秒前
4秒前
阿杜阿杜完成签到,获得积分10
4秒前
5秒前
5秒前
1717应助Rickpinkman采纳,获得30
5秒前
清风发布了新的文献求助10
6秒前
6秒前
青春关注了科研通微信公众号
7秒前
7秒前
ding应助余华庆采纳,获得10
8秒前
9秒前
Zzzzccc发布了新的文献求助10
10秒前
优雅苑睐发布了新的文献求助10
11秒前
liangjiangbo发布了新的文献求助10
12秒前
a_hu发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
15秒前
16秒前
坦率的冰蓝完成签到,获得积分10
18秒前
嘿嘿发布了新的文献求助10
18秒前
汉堡完成签到,获得积分10
19秒前
ZKL发布了新的文献求助10
19秒前
复杂羊青完成签到,获得积分10
19秒前
20秒前
简单喀秋莎发布了新的文献求助200
20秒前
a_hu完成签到,获得积分10
21秒前
23秒前
英姑应助Molly采纳,获得100
24秒前
王俞完成签到 ,获得积分10
25秒前
26秒前
周哲发布了新的文献求助10
29秒前
29秒前
所所应助江风采纳,获得10
30秒前
zgt01发布了新的文献求助10
31秒前
独特的新竹完成签到 ,获得积分10
31秒前
shuaideyapi发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4565565
求助须知:如何正确求助?哪些是违规求助? 3989217
关于积分的说明 12352186
捐赠科研通 3660609
什么是DOI,文献DOI怎么找? 2017286
邀请新用户注册赠送积分活动 1051644
科研通“疑难数据库(出版商)”最低求助积分说明 939317