A hierarchical blockchain-enabled distributed federated learning system with model-contribution based rewarding

计算机科学 吞吐量 分布式计算 声誉 机制(生物学) 块链 激励 计算机安全 无线 电信 社会科学 哲学 认识论 社会学 经济 微观经济学
作者
Haibo Wang,Hongwei Gao,Teng Ma,Chong Li,Jing Tao
出处
期刊:Digital Communications and Networks [KeAi]
被引量:1
标识
DOI:10.1016/j.dcan.2024.07.002
摘要

Distributed Federated Learning (DFL) technology enables participants to cooperatively train a shared model while preserving the privacy of their local data sets, making it a desirable solution for decentralized and privacy-preserving Web3 scenarios. However, DFL faces incentive and security challenges in the decentralized framework. To address these issues, this paper presents a Hierarchical Blockchain-enabled DFL (HBDFL) system, which provides a generic solution framework for the DFL-related applications. The proposed system consists of four major components, including a model contribution-based reward mechanism, a Proof of Elapsed Time and Accuracy (PoETA) consensus algorithm, a Distributed Reputation-based Verification Mechanism (DRTM) and an Accuracy-Dependent Throughput Management (ADTM) mechanism. The model contribution-based rewarding mechanism incentivizes network nodes to train models with their local datasets, while the PoETA consensus algorithm optimizes the tradeoff between the shared model accuracy and system throughput. The DRTM improves the system efficiency in consensus, and the ADTM mechanism guarantees that the throughput performance remains within a predefined range while improving the shared model accuracy. The performance of the proposed HBDFL system is evaluated by numerical simulations, which show that the system improves the accuracy of the shared model while maintaining high throughput and ensuring security.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bc应助hetao采纳,获得20
1秒前
sci完成签到 ,获得积分10
1秒前
所所应助did111采纳,获得10
2秒前
2秒前
别说谎完成签到,获得积分10
4秒前
勤恳含烟发布了新的文献求助10
4秒前
无限妙梦发布了新的文献求助10
5秒前
6秒前
Everglow发布了新的文献求助10
6秒前
123完成签到 ,获得积分10
6秒前
7秒前
7秒前
若雨凌风应助zengyiqiao采纳,获得20
8秒前
maomaozi完成签到,获得积分10
9秒前
何帅帅完成签到,获得积分10
9秒前
共享精神应助木子采纳,获得10
11秒前
11秒前
又又发布了新的文献求助10
12秒前
zengyiqiao完成签到,获得积分10
14秒前
jin发布了新的文献求助10
15秒前
NexusExplorer应助123采纳,获得10
16秒前
调皮傲易完成签到 ,获得积分10
16秒前
17秒前
小白菜完成签到,获得积分10
18秒前
猫臭完成签到,获得积分10
18秒前
水逆消退发布了新的文献求助10
21秒前
JamesPei应助CC采纳,获得10
22秒前
小h完成签到,获得积分10
22秒前
33ovo完成签到 ,获得积分10
23秒前
24秒前
24秒前
26秒前
青柏发布了新的文献求助10
26秒前
fjl发布了新的文献求助10
27秒前
Stata@R发布了新的文献求助10
27秒前
秋雁风完成签到,获得积分10
27秒前
称心如意完成签到 ,获得积分10
28秒前
科研通AI5应助研友_nER2JZ采纳,获得200
29秒前
房山芙完成签到,获得积分10
30秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803841
求助须知:如何正确求助?哪些是违规求助? 3348632
关于积分的说明 10339665
捐赠科研通 3064787
什么是DOI,文献DOI怎么找? 1682776
邀请新用户注册赠送积分活动 808429
科研通“疑难数据库(出版商)”最低求助积分说明 764096