Edge–cloud collaborative estimation lithium-ion battery SOH based on MEWOA-VMD and Transformer

锂离子电池 变压器 云计算 计算机科学 GSM演进的增强数据速率 离子 电池(电) 电气工程 材料科学 工程类 人工智能 化学 物理 电压 操作系统 功率(物理) 有机化学 量子力学
作者
Yuan Chen,Xiaohe Huang,Yigang He,Siyuan Zhang,Yujing Cai
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:99: 113388-113388 被引量:3
标识
DOI:10.1016/j.est.2024.113388
摘要

The State of Health (SOH) of lithium-ion batteries significantly impacts the performance, safety, and reliability of the battery, making it a crucial component of the battery management system. Addressing the issues of inadequate accuracy and lack of robustness in current SOH estimation methods, this study introduces a novel methodology for estimating SOH in lithium-ion batteries. It leverages the multi-population evolution whale optimization algorithm optimized variational mode decomposition (MEWOA-VMD) in conjunction with Transformer architecture. This framework enhances the efficiency and accuracy of SOH estimation by leveraging the computational capabilities of edge devices for real-time data processing, as well as the robust data processing power and model training advantages offered by cloud computing. Specifically, MEWOA is utilized to optimize VMD parameters, enabling MEWOA-VMD to fully decompose the capacity signal of lithium-ion batteries. This results in a component showing a global attenuation trend and a set of fluctuating components that represent capacity regeneration, thereby minimizing the impact of capacity regeneration on SOH estimation. Subsequently, all components are collectively input into the Transformer, marking the first application of this method for input. To enhance convergence speed and training efficiency, the layer normalization (LN) layer within the neural network architecture is proactively advanced. Finally, various artificial neural networks are compared and validated on three publicly available datasets. Furthermore, Gaussian noise is introduced into the original data to validate robustness. To confirm the practical applicability of the proposed method, real-world vehicle data is used for SOH estimation. The results indicate that the proposed method achieves a maximum MSE of no more than 0.009% across three publicly available datasets, showcasing improved accuracy and stability in SOH estimation. The practical applicability is further validated using real-world vehicle data, proving the proposed method's potential for application in edge cloud-based battery management systems. • Apply VMD to decompose battery data; feed IMFs simultaneously into Transformer. • Propose MEWOA to optimize VMD parameters, enhancing decomposition effectiveness. • Develop a model for SOH estimation, creating a edge–cloud collaborative framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TAOS完成签到 ,获得积分10
1秒前
三三得九完成签到 ,获得积分10
1秒前
今后应助ksxx采纳,获得10
2秒前
adong完成签到,获得积分10
2秒前
3秒前
3秒前
陈女士完成签到 ,获得积分10
4秒前
Orangeade完成签到,获得积分20
4秒前
大模型应助luminous采纳,获得10
6秒前
6秒前
jenningseastera应助Artorias采纳,获得10
7秒前
小卡比发布了新的文献求助10
8秒前
科研通AI5应助活力的尔蓉采纳,获得10
8秒前
领导范儿应助刘123采纳,获得10
10秒前
12秒前
dadad发布了新的文献求助10
12秒前
13秒前
小王同学完成签到,获得积分10
14秒前
jenningseastera应助Raymond采纳,获得10
14秒前
ksxx发布了新的文献求助10
16秒前
17秒前
KIE发布了新的文献求助10
17秒前
19秒前
我是老大应助ding采纳,获得10
20秒前
21秒前
bc驳回了dpiner应助
21秒前
所所应助活力的尔蓉采纳,获得10
21秒前
刘123发布了新的文献求助10
22秒前
23秒前
文章快快来完成签到,获得积分10
23秒前
Nancy发布了新的文献求助10
25秒前
传奇3应助ava采纳,获得10
26秒前
27秒前
28秒前
CipherSage应助科研通管家采纳,获得10
28秒前
Ava应助科研通管家采纳,获得10
28秒前
脑洞疼应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324313
关于积分的说明 10217843
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758401