亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Edge–cloud collaborative estimation lithium-ion battery SOH based on MEWOA-VMD and Transformer

锂离子电池 变压器 云计算 计算机科学 GSM演进的增强数据速率 离子 电池(电) 电气工程 材料科学 工程类 人工智能 化学 物理 电压 操作系统 功率(物理) 有机化学 量子力学
作者
Yuan Chen,Xiaohe Huang,Yigang He,Siyuan Zhang,Yujing Cai
出处
期刊:Journal of energy storage [Elsevier]
卷期号:99: 113388-113388 被引量:33
标识
DOI:10.1016/j.est.2024.113388
摘要

The State of Health (SOH) of lithium-ion batteries significantly impacts the performance, safety, and reliability of the battery, making it a crucial component of the battery management system. Addressing the issues of inadequate accuracy and lack of robustness in current SOH estimation methods, this study introduces a novel methodology for estimating SOH in lithium-ion batteries. It leverages the multi-population evolution whale optimization algorithm optimized variational mode decomposition (MEWOA-VMD) in conjunction with Transformer architecture. This framework enhances the efficiency and accuracy of SOH estimation by leveraging the computational capabilities of edge devices for real-time data processing, as well as the robust data processing power and model training advantages offered by cloud computing. Specifically, MEWOA is utilized to optimize VMD parameters, enabling MEWOA-VMD to fully decompose the capacity signal of lithium-ion batteries. This results in a component showing a global attenuation trend and a set of fluctuating components that represent capacity regeneration, thereby minimizing the impact of capacity regeneration on SOH estimation. Subsequently, all components are collectively input into the Transformer, marking the first application of this method for input. To enhance convergence speed and training efficiency, the layer normalization (LN) layer within the neural network architecture is proactively advanced. Finally, various artificial neural networks are compared and validated on three publicly available datasets. Furthermore, Gaussian noise is introduced into the original data to validate robustness. To confirm the practical applicability of the proposed method, real-world vehicle data is used for SOH estimation. The results indicate that the proposed method achieves a maximum MSE of no more than 0.009% across three publicly available datasets, showcasing improved accuracy and stability in SOH estimation. The practical applicability is further validated using real-world vehicle data, proving the proposed method's potential for application in edge cloud-based battery management systems. • Apply VMD to decompose battery data; feed IMFs simultaneously into Transformer. • Propose MEWOA to optimize VMD parameters, enhancing decomposition effectiveness. • Develop a model for SOH estimation, creating a edge–cloud collaborative framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
露营发布了新的文献求助10
4秒前
Josie完成签到 ,获得积分10
5秒前
粥粥完成签到 ,获得积分10
7秒前
傲娇问雁完成签到,获得积分10
14秒前
露营完成签到,获得积分10
26秒前
Thanks完成签到 ,获得积分10
28秒前
Rangi发布了新的文献求助10
29秒前
浅蓝完成签到 ,获得积分10
38秒前
爆米花应助Lancer1034采纳,获得10
40秒前
青木完成签到 ,获得积分10
44秒前
星辰大海应助ceeray23采纳,获得50
44秒前
lew发布了新的文献求助10
46秒前
南寅完成签到,获得积分10
55秒前
深情安青应助lew采纳,获得10
56秒前
1分钟前
微笑觅云发布了新的文献求助30
1分钟前
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
朴素海亦完成签到 ,获得积分10
1分钟前
hhh完成签到,获得积分10
1分钟前
Hikx完成签到 ,获得积分10
1分钟前
1分钟前
落寞的火车完成签到,获得积分10
1分钟前
Lancer1034完成签到,获得积分10
1分钟前
Lancer1034发布了新的文献求助10
1分钟前
嘟嘟完成签到 ,获得积分10
1分钟前
传奇3应助欠收拾小孩采纳,获得10
1分钟前
1分钟前
1分钟前
微笑觅云完成签到,获得积分10
1分钟前
YiXianCoA完成签到 ,获得积分10
1分钟前
XuAnW完成签到,获得积分10
1分钟前
Oo3发布了新的文献求助10
1分钟前
1分钟前
TRz发布了新的文献求助10
1分钟前
充电宝应助ceeray23采纳,获得20
1分钟前
大鼻子的新四岁完成签到,获得积分10
1分钟前
ixA发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564793
求助须知:如何正确求助?哪些是违规求助? 4649490
关于积分的说明 14689045
捐赠科研通 4591504
什么是DOI,文献DOI怎么找? 2519183
邀请新用户注册赠送积分活动 1491823
关于科研通互助平台的介绍 1462853