New Horizons of Model Informed Drug Development in Rare Diseases Drug Development

药物开发 临床试验 风险分析(工程) 监管科学 计算机科学 药品 数据科学 管理科学 人口 医学 医学物理学 重症监护医学 药理学 工程类 病理 环境卫生
作者
Amitava Mitra,Nessy Tania,Mariam A. Ahmed,Noha Rayad,Rajesh Krishna,Salwa Albusaysi,Rana B. Bakhaidar,Elizabeth Y. Shang,Maria Burian,Michelle D Martin-Pozo,Islam R. Younis
出处
期刊:Clinical Pharmacology & Therapeutics [Wiley]
卷期号:116 (6): 1398-1411 被引量:1
标识
DOI:10.1002/cpt.3366
摘要

Model‐informed approaches provide a quantitative framework to integrate all available nonclinical and clinical data, thus furnishing a totality of evidence approach to drug development and regulatory evaluation. Maximizing the use of all available data and information about the drug enables a more robust characterization of the risk–benefit profile and reduces uncertainty in both technical and regulatory success. This offers the potential to transform rare diseases drug development, where conducting large well‐controlled clinical trials is impractical and/or unethical due to a small patient population, a significant portion of which could be children. Additionally, the totality of evidence generated by model‐informed approaches can provide confirmatory evidence for regulatory approval without the need for additional clinical data. In the article, applications of novel quantitative approaches such as quantitative systems pharmacology, disease progression modeling, artificial intelligence, machine learning, modeling of real‐world data using model‐based meta‐analysis and strategies such as external control and patient‐reported outcomes as well as clinical trial simulations to optimize trials and sample collection are discussed. Specific case studies of these modeling approaches in rare diseases are provided to showcase applications in drug development and regulatory review. Finally, perspectives are shared on the future state of these modeling approaches in rare diseases drug development along with challenges and opportunities for incorporating such tools in the rational development of drug products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心代芙完成签到 ,获得积分10
1秒前
2秒前
科学徐完成签到,获得积分20
3秒前
3秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
Jenny应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
xzn1123应助科研通管家采纳,获得10
5秒前
5秒前
科学徐发布了新的文献求助10
6秒前
嘟嘟豆806完成签到 ,获得积分10
6秒前
NiNi完成签到,获得积分10
6秒前
7秒前
科研yu发布了新的文献求助10
7秒前
panyu完成签到,获得积分10
8秒前
9秒前
七七完成签到,获得积分10
10秒前
内向秋寒发布了新的文献求助10
11秒前
melody发布了新的文献求助10
12秒前
金枪鱼完成签到,获得积分10
13秒前
科研小民工应助官高一品采纳,获得50
14秒前
cdercder应助LFYBing采纳,获得10
15秒前
小蘑菇应助doctorsu采纳,获得10
17秒前
内向秋寒完成签到,获得积分10
18秒前
dfghjkl完成签到 ,获得积分10
18秒前
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777749
求助须知:如何正确求助?哪些是违规求助? 3323285
关于积分的说明 10213393
捐赠科研通 3038542
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798152
科研通“疑难数据库(出版商)”最低求助积分说明 758275