Exploring temporal sensitivity in the brain using multi-timescale language models: an EEG decoding study

脑电图 解码方法 灵敏度(控制系统) 计算机科学 语言模型 语音识别 人工智能 心理学 神经科学 算法 电子工程 工程类
作者
Sijie Ling,A. St. J. Murphy,Alona Fyshe
出处
期刊:Computational Linguistics [Association for Computational Linguistics]
卷期号:: 1-30
标识
DOI:10.1162/coli_a_00533
摘要

Abstract The brain’s ability to perform complex computations at varying timescales is crucial, ranging from understanding single words to grasping the overarching narrative of a story. Recently, multi-timescale long short-term memory (MT-LSTM) models (Mahto et al. 2020; Jain et al. 2020) have been introduced, which use temporally-tuned parameters to induce sensitivity to different timescales of language processing (i.e. related to near/distant words). However, there has not been an exploration of the relation between such temporally-tuned information processing in MT-LSTMs and the brain’s language processing using high temporal resolution recording modalities, such as electroencephalography (EEG). To bridge this gap, we used an EEG dataset recorded while participants listened to Chapter 1 of “Alice in Wonderland” and trained ridge regression models to predict the temporally-tuned MT-LSTM embeddings from EEG responses. Our analysis reveals that EEG signals can be used to predict MT-LSTM embeddings across various timescales. For longer timescales, our models produced accurate predictions within an extended time window of ±2 s around word onset, while for shorter timescales, significant predictions are confined to a narrow window ranging from −180 ms to 790 ms. Intriguingly, we observed that short timescale information is not only processed in the vicinity of word onset but also at distant time points. These observations underscore the parallels and discrepancies between computational models and the neural mechanisms of the brain. As word embeddings are used more as in silico models of semantic representation in the brain, a more explicit consideration of timescale-dependent processing enables more targeted explorations of language processing in humans and machines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fys发布了新的文献求助10
刚刚
青旋发布了新的文献求助10
刚刚
ying关注了科研通微信公众号
刚刚
1秒前
3秒前
幽默囧完成签到,获得积分10
4秒前
勤恳马里奥应助乔安娜采纳,获得10
7秒前
7秒前
8秒前
无情凡桃发布了新的文献求助10
8秒前
9秒前
Zero发布了新的文献求助10
11秒前
12秒前
勤恳的嚓茶完成签到,获得积分10
12秒前
rui发布了新的文献求助10
13秒前
含蓄听南完成签到,获得积分10
13秒前
林菲菲完成签到,获得积分10
14秒前
轻语发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
斯文败类应助疯狂的夏天采纳,获得10
19秒前
科研通AI5应助QQ采纳,获得10
20秒前
Merak完成签到,获得积分10
20秒前
leotao完成签到,获得积分10
20秒前
six完成签到,获得积分10
22秒前
medmh发布了新的文献求助10
22秒前
乐乐发布了新的文献求助10
23秒前
23秒前
24秒前
花花应助Grant采纳,获得10
25秒前
27秒前
27秒前
28秒前
rui完成签到,获得积分10
29秒前
华仔应助科研通管家采纳,获得10
29秒前
慕青应助乐乐采纳,获得10
30秒前
Orange应助科研通管家采纳,获得10
30秒前
斯文败类应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783657
求助须知:如何正确求助?哪些是违规求助? 3328839
关于积分的说明 10238741
捐赠科研通 3044202
什么是DOI,文献DOI怎么找? 1670861
邀请新用户注册赠送积分活动 799939
科研通“疑难数据库(出版商)”最低求助积分说明 759171