拖车
弹道
模型预测控制
卡车
运动学
计算机科学
软件部署
控制器(灌溉)
运动规划
最优控制
软件
控制工程
控制理论(社会学)
模拟
控制(管理)
工程类
机器人
人工智能
汽车工程
数学优化
计算机网络
农学
物理
数学
经典力学
天文
生物
程序设计语言
操作系统
作者
Mathias Bos,Bastiaan Vandewal,Wilm Decré,Jan Swevers
标识
DOI:10.1016/j.ifacol.2023.10.1258
摘要
Time-optimal motion planning of autonomous vehicles in complex environments is a highly researched topic. This paper describes a novel approach to optimize and execute locally feasible trajectories for the maneuvering of a truck-trailer Autonomous Mobile Robot (AMR), by dividing the environment in a sequence or route of freely accessible overlapping corridors. Multi-stage optimal control generates local trajectories through advancing subsets of this route. To cope with the advancing subsets and changing environments, the optimal control problem is solved online with a receding horizon in a Model Predictive Control (MPC) fashion with an improved update strategy. This strategy seamlessly integrates the computationally expensive MPC updates with a low-cost feedback controller for trajectory tracking, for disturbance rejection, and for stabilization of the unstable kinematics of the reversing truck-trailer AMR. This methodology is implemented in a flexible software framework for an effortless transition from offline simulations to deployment of experiments. An experimental setup showcasing the truck-trailer AMR performing two reverse parking maneuvers validates the presented method.
科研通智能强力驱动
Strongly Powered by AbleSci AI