数学
特征向量
舒尔补语
可列斯基分解
区域分解方法
算法
矩阵分解
稀疏矩阵
铅笔(光学)
插值(计算机图形学)
矩阵铅笔
计算机科学
机械工程
动画
物理
计算机图形学(图像)
量子力学
有限元法
高斯分布
工程类
热力学
作者
Tianshi Xu,A. R. Austin,Vasileios Kalantzis,Yousef Saad
摘要
.We propose a distributed-memory parallel algorithm for computing some of the algebraically smallest eigenvalues (and corresponding eigenvectors) of a large, sparse, real symmetric positive definite matrix pencil that lie within a target interval. The algorithm is based on Chebyshev interpolation of the eigenvalues of the Schur complement (over the interface variables) of a domain decomposition reordering of the pencil and accordingly exposes two dimensions of parallelism: one derived from the reordering and one from the independence of the interpolation nodes. The new method demonstrates excellent parallel scalability, comparing favorably with PARPACK, and does not require factorization of the mass matrix, which significantly reduces memory consumption, especially for 3D problems. Our implementation is publicly available on GitHub.Keywordssymmetric generalized eigenvalue problemspectral Schur complementsChebyshev approximationparallel computingMSC codes15A1865D1565F1565N5565Y0568W10
科研通智能强力驱动
Strongly Powered by AbleSci AI