Towards accurate real-time luminescence thermometry: An automated machine learning approach

光致发光 发光 激发态 计算机科学 材料科学 纳米材料 纳米技术 能量(信号处理) 人工智能 光电子学 反褶积 算法 物理 原子物理学 量子力学
作者
Emanuel P. Santos,Roberta S. Pugina,Eloísa G. Hilário,Alyson J. A. Carvalho,Carlos Jacinto,Francisco A. M. G. Rego-Filho,Askery Canabarro,Anderson S. L. Gomes,José Maurício A. Caiut,André L. Moura
出处
期刊:Sensors and Actuators A-physical [Elsevier BV]
卷期号:362: 114666-114666 被引量:14
标识
DOI:10.1016/j.sna.2023.114666
摘要

Luminescence thermometry has been extensively exploited in the last decades both from the fundamental and applied point of views. The application of photoluminescent nanoparticles on the microscopic level based on rare-earth doped (RED) nanostructures is yet a challenge. Distinct underlying physical mechanisms in the RED nanomaterials have been exploited, such as intensity ratio between radiative transitions associated with thermally coupled energy levels, energy peak and lifetime of an excited state variations with the temperature. The drawbacks of such systems are the relatively low thermal sensitivity (Sr), and the large temperature uncertainty. To overcome that, several research groups have been seeking new functionalized materials. The majority of the efforts have been directed towards increasing Sr with record around 10%°C−1, which is, however, considered unsatisfactory. We propose the use of an automated machine learning tool to retrieve an ideal pipeline improving the response of photoluminescence thermometers. As a proof-of-concept, we used Nd3+-doped YAG nanoparticles, excited at 760 nm, and the photoluminescence spectra in the range from 860 nm to 960 nm as input parameters. In addition to the improvement in the accuracy (> 5.5 × over traditional methods), the implementation is very simple, without the requirement of any deconvolution procedure or knowledge of any underlying physical mechanism. Our findings demonstrate that this approach is resilient to natural variances across various spectral acquisitions, which may otherwise lead to an inaccurate estimation of temperature, opening the door for real-time applications. Our open-source code is designed to be accessible to individuals without programming experience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xsy2000发布了新的文献求助10
刚刚
魔幻流沙发布了新的文献求助30
刚刚
1秒前
徐伟康完成签到 ,获得积分0
1秒前
汪汪完成签到,获得积分10
3秒前
3秒前
nihao完成签到,获得积分10
3秒前
4秒前
5秒前
科研通AI5应助木偶采纳,获得10
6秒前
拓跋书芹发布了新的文献求助10
7秒前
7秒前
鱿小鱼给鱿小鱼的求助进行了留言
7秒前
万能图书馆应助Einson采纳,获得10
8秒前
nihao发布了新的文献求助10
8秒前
陈陈发布了新的文献求助10
8秒前
过时的又槐完成签到,获得积分10
9秒前
情怀应助热的雪采纳,获得10
10秒前
郭京京发布了新的文献求助10
12秒前
yang完成签到,获得积分10
12秒前
joey完成签到,获得积分20
13秒前
xsy2000完成签到,获得积分10
14秒前
热呃呃呃发布了新的文献求助10
16秒前
16秒前
ynchendt完成签到,获得积分10
17秒前
18秒前
Akim应助YORLAN采纳,获得10
19秒前
20秒前
21秒前
24秒前
难过的尔丝完成签到,获得积分10
26秒前
草原狼完成签到,获得积分10
27秒前
28秒前
独特灵发布了新的文献求助10
29秒前
30秒前
木偶发布了新的文献求助10
31秒前
明芷蝶完成签到,获得积分10
33秒前
34秒前
研友_pnxjd8发布了新的文献求助10
35秒前
36秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826464
求助须知:如何正确求助?哪些是违规求助? 3368853
关于积分的说明 10452611
捐赠科研通 3088427
什么是DOI,文献DOI怎么找? 1699065
邀请新用户注册赠送积分活动 817272
科研通“疑难数据库(出版商)”最低求助积分说明 770130