Optimization of ReaxFF Reactive Force Field Parameters for Cu/Si/O Systems via Neural Network Inversion with Application to Copper Oxide Interaction with Silicon

雷亚克夫 人工神经网络 材料科学 力场(虚构) 工艺优化 计算机科学 分子动力学 纳米技术 生物系统 人工智能 化学 工程类 光电子学 计算化学 原子间势 化学工程 冶金 生物
作者
Kamyar Akbari Roshan,Mahdi Khajeh Talkhoncheh,Mert Y. Sengul,David J. Miller,Adri C. T. van Duin
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:127 (41): 20445-20458 被引量:3
标识
DOI:10.1021/acs.jpcc.3c03079
摘要

The presence of transition metal oxide impurities introduced during crystal formation or during the fabrication process may lead to a significant yield loss in microelectronics and device manufacturing. To enable a large-scale molecular dynamics study of the effects of copper oxide impurities inside silicon on the structural evolution and mechanical properties of Cu/Si/O systems, one needs to understand the diffusional characteristics of copper and oxygen compounds next to the silicon lattice. In this work, we introduce an accelerated deep learning-based reactive force field parametrization platform. In this platform, we train a deep neural network to learn the production of ReaxFF outputs, given a set of force field parameters. Subsequently, the trained neural network is used, as an alternative to ReaxFF, by means of the neural network inversion algorithm to seek the inputs to the neural network (force field parameters) that produce the experimental and quantum mechanics reference property values of the system. We compared the performance of the neural network inversion optimization algorithm with that of the previously used brute force search method by looking at the total optimization time and the total reduction of the discrepancies between the results of molecular dynamic simulation and the reference property values within the force field training set. The neural network inversion algorithm significantly reduces the average optimization time, which directly translates into less computational resources required for the optimization process. Moreover, we compared the quality of the force fields optimized by both algorithms in describing the chemical properties of the Cu/O systems, including the heat of formation and the relative phase stability. We demonstrated that the results of the force field, optimized using the proposed neural network inversion algorithm, align more closely with the reference chemical properties of Cu/O systems within the force field training set than those optimized by the brute force algorithm. We used this platform to develop a Cu/Si/O ReaxFF reactive force field by training on density functional theory (DFT) data, including heat of formation values for various Cu/Si/O materials. The developed force field was further used to perform molecular dynamics simulations on models with up to 3542 atoms to study atomistic interactions between copper oxide compounds and silicon by looking at the diffusional behavior of copper and oxygen atoms adjacent to the Si substrate. We found that the temperature substantially impacts the Cu oxide diffusion coefficient. Our simulation results enable us to comprehensively understand the effects of oxygen atoms on the diffusion of copper impurities into the silicon lattice. We showed that a Cu oxide cluster shows diffusion faster than that of a pure Cu cluster adjacent to a Si supercell. By studying the interaction between Cu oxide and Si nanolayers at different temperatures, we observed that at higher temperatures, oxygen atoms migrate from the initial CuOx material to diffuse into the Si phase. In addition, we showed that the absolute decay rate of the average Cu–Cu bond length is directly dependent on the simulation temperature.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
11关闭了11文献求助
1秒前
1秒前
yyc完成签到,获得积分10
2秒前
3秒前
3秒前
5秒前
xr完成签到 ,获得积分10
6秒前
好好学习的小学生完成签到 ,获得积分10
7秒前
刘沂卓发布了新的文献求助10
7秒前
DWD发布了新的文献求助10
7秒前
科研通AI6.2应助梅子酒采纳,获得10
8秒前
8秒前
戒糖宝贝发布了新的文献求助10
9秒前
9秒前
10秒前
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
13秒前
13秒前
YWD发布了新的文献求助10
13秒前
呜呼啦呼完成签到,获得积分10
16秒前
萱瑄爸爸发布了新的文献求助10
16秒前
KK发布了新的文献求助10
17秒前
净尤利安发布了新的文献求助10
19秒前
时迁完成签到 ,获得积分10
22秒前
Owen应助暮色陈陈采纳,获得10
24秒前
aa完成签到,获得积分10
27秒前
迷路白曼完成签到,获得积分10
28秒前
落沧完成签到,获得积分10
28秒前
偷喝一口旺仔完成签到 ,获得积分10
29秒前
32秒前
34秒前
共享精神应助KK采纳,获得10
34秒前
Zyq发布了新的文献求助10
36秒前
YWD发布了新的文献求助10
37秒前
科研通AI6.2应助slby采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
A History of Rice in China 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5874841
求助须知:如何正确求助?哪些是违规求助? 6511178
关于积分的说明 15675264
捐赠科研通 4992453
什么是DOI,文献DOI怎么找? 2691169
邀请新用户注册赠送积分活动 1633536
关于科研通互助平台的介绍 1591188