Optimization of ReaxFF Reactive Force Field Parameters for Cu/Si/O Systems via Neural Network Inversion with Application to Copper Oxide Interaction with Silicon

雷亚克夫 人工神经网络 材料科学 力场(虚构) 工艺优化 计算机科学 分子动力学 纳米技术 生物系统 人工智能 化学 工程类 光电子学 计算化学 原子间势 化学工程 冶金 生物
作者
Kamyar Akbari Roshan,Mahdi Khajeh Talkhoncheh,Mert Y. Sengul,David J. Miller,Adri C. T. van Duin
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:127 (41): 20445-20458 被引量:3
标识
DOI:10.1021/acs.jpcc.3c03079
摘要

The presence of transition metal oxide impurities introduced during crystal formation or during the fabrication process may lead to a significant yield loss in microelectronics and device manufacturing. To enable a large-scale molecular dynamics study of the effects of copper oxide impurities inside silicon on the structural evolution and mechanical properties of Cu/Si/O systems, one needs to understand the diffusional characteristics of copper and oxygen compounds next to the silicon lattice. In this work, we introduce an accelerated deep learning-based reactive force field parametrization platform. In this platform, we train a deep neural network to learn the production of ReaxFF outputs, given a set of force field parameters. Subsequently, the trained neural network is used, as an alternative to ReaxFF, by means of the neural network inversion algorithm to seek the inputs to the neural network (force field parameters) that produce the experimental and quantum mechanics reference property values of the system. We compared the performance of the neural network inversion optimization algorithm with that of the previously used brute force search method by looking at the total optimization time and the total reduction of the discrepancies between the results of molecular dynamic simulation and the reference property values within the force field training set. The neural network inversion algorithm significantly reduces the average optimization time, which directly translates into less computational resources required for the optimization process. Moreover, we compared the quality of the force fields optimized by both algorithms in describing the chemical properties of the Cu/O systems, including the heat of formation and the relative phase stability. We demonstrated that the results of the force field, optimized using the proposed neural network inversion algorithm, align more closely with the reference chemical properties of Cu/O systems within the force field training set than those optimized by the brute force algorithm. We used this platform to develop a Cu/Si/O ReaxFF reactive force field by training on density functional theory (DFT) data, including heat of formation values for various Cu/Si/O materials. The developed force field was further used to perform molecular dynamics simulations on models with up to 3542 atoms to study atomistic interactions between copper oxide compounds and silicon by looking at the diffusional behavior of copper and oxygen atoms adjacent to the Si substrate. We found that the temperature substantially impacts the Cu oxide diffusion coefficient. Our simulation results enable us to comprehensively understand the effects of oxygen atoms on the diffusion of copper impurities into the silicon lattice. We showed that a Cu oxide cluster shows diffusion faster than that of a pure Cu cluster adjacent to a Si supercell. By studying the interaction between Cu oxide and Si nanolayers at different temperatures, we observed that at higher temperatures, oxygen atoms migrate from the initial CuOx material to diffuse into the Si phase. In addition, we showed that the absolute decay rate of the average Cu–Cu bond length is directly dependent on the simulation temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
要开心完成签到 ,获得积分10
5秒前
Forest完成签到,获得积分10
5秒前
wxxz完成签到,获得积分10
6秒前
啵啵只因完成签到,获得积分10
7秒前
ymr完成签到 ,获得积分10
7秒前
QYY完成签到,获得积分10
9秒前
沙漠西瓜皮完成签到 ,获得积分10
11秒前
英姑应助学术狂徒劲别采纳,获得30
12秒前
李健完成签到 ,获得积分10
14秒前
hdx完成签到 ,获得积分10
14秒前
ee完成签到,获得积分10
14秒前
默默完成签到 ,获得积分10
15秒前
15秒前
杨子怡完成签到 ,获得积分10
15秒前
18秒前
zhonghbush完成签到,获得积分10
18秒前
韩凌发布了新的文献求助10
20秒前
Singularity应助健忘的含卉采纳,获得10
24秒前
FUNG完成签到 ,获得积分10
24秒前
文存完成签到,获得积分20
25秒前
蓝天小小鹰完成签到 ,获得积分10
26秒前
李健的小迷弟应助白菜采纳,获得10
27秒前
文献求助完成签到,获得积分10
30秒前
韩凌完成签到,获得积分10
30秒前
听寒完成签到,获得积分10
31秒前
yuna完成签到 ,获得积分10
32秒前
害羞便当完成签到 ,获得积分10
34秒前
哈哈哈大赞完成签到,获得积分10
35秒前
科研小白完成签到,获得积分10
35秒前
科研通AI5应助韩凌采纳,获得10
35秒前
sci_zt完成签到 ,获得积分10
36秒前
zhonghbush发布了新的文献求助10
42秒前
1234完成签到 ,获得积分10
43秒前
44秒前
不敢装睡完成签到,获得积分10
45秒前
Tina酱完成签到 ,获得积分10
45秒前
yy完成签到 ,获得积分10
46秒前
二傻不刮痧完成签到 ,获得积分10
47秒前
Deerlu完成签到,获得积分10
49秒前
hyjcs完成签到,获得积分0
52秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340681
关于积分的说明 10301038
捐赠科研通 3057231
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626