Machine learning method is an alternative for the hydrological model in an alpine catchment in the Tianshan region, Central Asia

水流 SWAT模型 水土评价工具 流域 环境科学 冰川 气候学 水文学(农业) 自然地理学 地质学 地理 地图学 岩土工程
作者
Wenting Liang,Yaning Chen,Gonghuan Fang,Azamat Kaldybayev
出处
期刊:Journal of Hydrology: Regional Studies [Elsevier BV]
卷期号:49: 101492-101492 被引量:21
标识
DOI:10.1016/j.ejrh.2023.101492
摘要

Kaidu River catchment in the Tianshan Mountain, northwestern China. This paper compared the applicability and accuracy of four machine learning models and two hydrological ones to simulate the daily streamflow and extreme streamflow of the Kaidu River catchment. The machine learning models are Support Vector Regression (SVR), eXtreme Gradient Boosting (XGBoost), Random Forests (RF), and Long Short-Term Memory (LSTM), while the hydrological models are the Soil and Water Assessment Tool (SWAT) and the extended SWAT with a glacier dynamic module (SWAT-Glacier). LSTM achieved better model performance in simulating daily streamflow than SWAT and SWAT-Glacier, with Kling-Gupta efficiency of 0.92, 0.82, and 0.80, respectively. Meanwhile, SVR, XGBoost, and RF showed satisfactory performance, with KGE of 0.67, 0.71, and 0.70, respectively. LSTM, SWAT and SWAT-Glacier could well simulate the annual peak flow (i.e., annual maximum 1-day streamflow and 5-day average streamflow) but failed to mimic the annual minimum 7-day average streamflow, with PBIAS exceeding 28%. Furthermore, all the models failed to reproduce the dates of hydrological extremes. Nevertheless, using the quantile loss function in the LSTM model resulted in significantly improved model performance in the low streamflow indices, compared to that using mean squared error as the loss function. Overall, LSTM could be a good alternative for simulating daily streamflow and extreme streamflow in data-scarce catchments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助xiao双月采纳,获得10
1秒前
1秒前
Pises完成签到,获得积分10
1秒前
2秒前
3秒前
dis完成签到,获得积分10
3秒前
畅快代玉完成签到,获得积分20
4秒前
粒粒完成签到,获得积分10
4秒前
4秒前
某杏发布了新的文献求助10
4秒前
long完成签到,获得积分10
5秒前
江璃完成签到,获得积分10
5秒前
三土有兀完成签到 ,获得积分10
5秒前
momo完成签到 ,获得积分10
5秒前
6秒前
眼睛大天抒完成签到,获得积分10
7秒前
头冒尖尖角完成签到,获得积分10
7秒前
萌新完成签到,获得积分10
7秒前
7秒前
8秒前
NO0809发布了新的文献求助10
8秒前
小小化学人完成签到,获得积分20
8秒前
愉快的真应助科研打工人er采纳,获得100
9秒前
科研野狗完成签到 ,获得积分10
9秒前
平常安雁完成签到 ,获得积分10
9秒前
Orange应助ha采纳,获得10
10秒前
10秒前
方翔应助shisui采纳,获得100
10秒前
Chillym完成签到 ,获得积分10
11秒前
李健应助0℃采纳,获得10
11秒前
11秒前
今后应助坏坏的快乐采纳,获得10
11秒前
ZX0501完成签到,获得积分10
12秒前
满洲里的雾完成签到,获得积分10
12秒前
石龙子完成签到,获得积分10
12秒前
皇甫妙竹完成签到,获得积分10
12秒前
long发布了新的文献求助10
13秒前
地表飞猪应助加减乘除采纳,获得10
14秒前
雪天的阳完成签到 ,获得积分10
15秒前
yuanyuan完成签到,获得积分10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1500
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
Composite Predicates in English 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3981546
求助须知:如何正确求助?哪些是违规求助? 3525250
关于积分的说明 11225976
捐赠科研通 3263072
什么是DOI,文献DOI怎么找? 1801445
邀请新用户注册赠送积分活动 879795
科研通“疑难数据库(出版商)”最低求助积分说明 807553