亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Occluded Face Recognition Using Deep Convolutional Neural Network with Sparse Representation

计算机科学 面部识别系统 卷积神经网络 人工智能 模式识别(心理学) 面子(社会学概念) 稀疏逼近 代表(政治) 鉴定(生物学) 特征提取 三维人脸识别 特征(语言学) 领域(数学) 滤波器(信号处理) 人脸检测 计算机视觉 数学 植物 生物 政治 语言学 社会科学 哲学 社会学 法学 纯数学 政治学
作者
S. Anusha,K. Nimala
标识
DOI:10.1109/accai58221.2023.10200930
摘要

The restricted ability to distinguish faces under occlusions is a topic that has been around for a long time and offers a unique difficulty not just for face recognition algorithms but also for humans. When compared to other obstacles, such as position variation, varied expressions, and so on, the topic involving occlusion has received significantly less attention from researchers. Despite this, occluded face identification is absolutely necessary in order to realise the full potential of face recognition for use in real-world applications. Several factors have contributed to the rapid development and improvement of facial recognition algorithms throughout the years. Researchers have researched and created a multitude of algorithms for occluded face recognition because of the unexpected aspects encountered in real-world circumstances. Yet, as a result of the epidemic, masked face recognition research has emerged as a distinct branch of occluded face identification and a pressing challenge in the field. The feature extraction stage of a convolutional neural network (CNN) is recommended to benefit from the addition of a sparse representation layer in this paper. Our objective is to improve a target network's functionality by including sparse transforms into it, all without requiring the network to perform more mathematical operations. To begin, the method that will be shown was developed by beginning with the shallow layers of a target network and then proceeding to add the sparse representation layers. Following that, the network was trained with four distinct datasets. The Difference of Gaussian Filter, also known as the DoG Filter, is a pre-processing technique that is used to minimise noise before training. The accuracy of the model that was proposed is higher than the accuracy of the other model with 98.13%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
Run发布了新的文献求助10
3秒前
JFy完成签到 ,获得积分10
10秒前
大龙哥886应助Run采纳,获得10
19秒前
上官若男应助Run采纳,获得10
19秒前
小星星关注了科研通微信公众号
20秒前
25秒前
26秒前
30秒前
daggeraxe完成签到 ,获得积分10
43秒前
52秒前
Oven完成签到,获得积分10
53秒前
57秒前
山山完成签到 ,获得积分10
1分钟前
1分钟前
青皮橘子应助oleskarabach采纳,获得10
1分钟前
青柠发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
无花果应助科研通管家采纳,获得30
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
秋作完成签到,获得积分10
1分钟前
1分钟前
21145077发布了新的文献求助10
1分钟前
科研通AI2S应助Oven采纳,获得10
1分钟前
1分钟前
天天是好天完成签到,获得积分10
1分钟前
wzgkeyantong发布了新的文献求助30
1分钟前
1分钟前
天天是好天关注了科研通微信公众号
2分钟前
2分钟前
wzgkeyantong完成签到,获得积分10
2分钟前
orixero应助小张同学采纳,获得10
2分钟前
2分钟前
绾妤完成签到 ,获得积分0
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493817
求助须知:如何正确求助?哪些是违规求助? 4591820
关于积分的说明 14434723
捐赠科研通 4524243
什么是DOI,文献DOI怎么找? 2478740
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436499