External validation of a predictive model for reintubation after cardiac surgery: A retrospective, observational study

布里氏评分 医学 接收机工作特性 统计的 判别式 统计 一致性 急诊医学 内科学 计算机科学 人工智能 数学
作者
Robert E. Freundlich,Jacob C. Clifton,Richard H. Epstein,Pratik P. Pandharipande,Tristan Grogan,Ryan Moore,Daniel W. Byrne,Michael Fabbro,Ira Hofer
出处
期刊:Journal of Clinical Anesthesia [Elsevier BV]
卷期号:92: 111295-111295 被引量:1
标识
DOI:10.1016/j.jclinane.2023.111295
摘要

Explore validation of a model to predict patients' risk of failing extubation, to help providers make informed, data-driven decisions regarding the optimal timing of extubation. We performed temporal, geographic, and domain validations of a model for the risk of reintubation after cardiac surgery by assessing its performance on data sets from three academic medical centers, with temporal validation using data from the institution where the model was developed. Three academic medical centers in the United States. Adult patients arriving in the cardiac intensive care unit with an endotracheal tube in place after cardiac surgery. Receiver operating characteristic (ROC) curves and concordance statistics were used as measures of discriminative ability, and calibration curves and Brier scores were used to assess the model's predictive ability. Temporal validation was performed in 1642 patients with a reintubation rate of 4.8%, with the model demonstrating strong discrimination (optimism-corrected c-statistic 0.77) and low predictive error (Brier score 0.044) but poor model precision and recall (Optimal F1 score 0.29). Combined domain and geographic validation were performed in 2041 patients with a reintubation rate of 1.5%. The model displayed solid discriminative ability (optimism-corrected c-statistic = 0.73) and low predictive error (Brier score = 0.0149) but low precision and recall (Optimal F1 score = 0.13). Geographic validation was performed in 2489 patients with a reintubation rate of 1.6%, with the model displaying good discrimination (optimism-corrected c-statistic = 0.71) and predictive error (Brier score = 0.0152) but poor precision and recall (Optimal F1 score = 0.13). The reintubation model displayed strong discriminative ability and low predictive error within each validation cohort. Future work is needed to explore how to optimize models before local implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夫茶饮完成签到,获得积分10
刚刚
Mint完成签到 ,获得积分10
1秒前
柠栀发布了新的文献求助30
1秒前
pihriyyy完成签到,获得积分10
2秒前
坦率灵槐发布了新的文献求助10
2秒前
4秒前
5秒前
乐乐应助火焰迷踪采纳,获得10
5秒前
6秒前
6秒前
10秒前
angel发布了新的文献求助10
12秒前
qingchenwuhou完成签到 ,获得积分10
14秒前
合适磬发布了新的文献求助10
15秒前
痴情的飞鸟完成签到,获得积分10
15秒前
阳先生发布了新的文献求助30
15秒前
古或今完成签到,获得积分10
15秒前
本之上课发布了新的文献求助10
16秒前
Jasper应助等待黎明采纳,获得10
17秒前
yang完成签到,获得积分10
17秒前
18秒前
20秒前
20秒前
谷谷完成签到,获得积分10
20秒前
20秒前
21秒前
火焰迷踪发布了新的文献求助10
24秒前
冷傲新柔发布了新的文献求助10
24秒前
脑洞疼应助痴情的飞鸟采纳,获得10
25秒前
25秒前
隐形曼青应助白木采纳,获得10
26秒前
26秒前
yang发布了新的文献求助10
27秒前
111111发布了新的文献求助10
29秒前
郭奕彤发布了新的文献求助10
29秒前
Lee完成签到,获得积分10
30秒前
sran完成签到 ,获得积分10
32秒前
littlekang完成签到,获得积分10
34秒前
Aourp应助断章采纳,获得10
34秒前
小葡萄完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5309724
求助须知:如何正确求助?哪些是违规求助? 4454247
关于积分的说明 13859535
捐赠科研通 4342205
什么是DOI,文献DOI怎么找? 2384385
邀请新用户注册赠送积分活动 1378844
关于科研通互助平台的介绍 1347021