亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting postoperative outcomes in lumbar spinal fusion: development of a machine learning model

医学 腰椎 脊椎滑脱 逻辑回归 腰痛 物理疗法 脊柱融合术 回顾性队列研究 背痛 机器学习 外科 计算机科学 内科学 病理 替代医学
作者
Lukas Schönnagel,Thomas Caffard,Tu‐Lan Vu‐Han,Jiaqi Zhu,Isaac Nathoo,Kyle Finos,Gastón Camino-Willhuber,Soji Tani,Ali E. Guven,Henryk Haffer,Maximilian Muellner,Artine Arzani,Erika Chiapparelli,Krizia Amoroso,Jennifer Shue,Roland Duculan,Matthias Pumberger,Timo Zippelius,Andrew A. Sama,Frank P. Cammisa
出处
期刊:The Spine Journal [Elsevier BV]
卷期号:24 (2): 239-249 被引量:13
标识
DOI:10.1016/j.spinee.2023.09.029
摘要

BACKGROUND CONTEXT Degenerative lumbar spondylolisthesis (DLS) is a prevalent spinal disorder, often requiring surgical intervention. Accurately predicting surgical outcomes is crucial to guide clinical decision-making, but this is challenging due to the multifactorial nature of postoperative results. Traditional risk assessment tools have limitations, and with the advent of machine learning, there is potential to enhance the precision and comprehensiveness of preoperative evaluations. PURPOSE We aimed to develop a machine-learning algorithm to predict surgical outcomes in patients with degenerative lumbar spondylolisthesis (DLS) undergoing spinal fusion surgery, only using preoperative data. STUDY DESIGN Retrospective cross-sectional study. PATIENT SAMPLE Patients with DLS undergoing lumbar spinal fusion surgery. OUTCOME MEASURES This study aimed to predict the occurrence of lower back pain (LBP) ≥4 on the numeric analogue scale (NAS) 2 years after surgery. LBP was evaluated as the average pain patients experienced at rest in the week before questioning. NAS ranges from 0 to 10, 0 representing no pain and 10 representing the worst pain imaginable. METHODS We conducted a retrospective analysis of prospectively enrolled patients who underwent spinal fusion surgery for degenerative lumbar spondylolistheses at our institution in the United States between January 2016 and December 2018. The initial patient characteristics to be included in the training of the model were chosen by clinical expertise and through a literature review and included demographic characteristics, comorbidities, and radiologic features. The data was split into a training and validation datasets using a 60/40 split. Four different machine learning models were trained, including the modern XGBoost model, logistic regression, random-forest, and support vector machine (SVM). The models were evaluated according to the area under the curve (AUC) of the receiver operating characteristics (ROC) curve. An AUC of 0.7 to 0.8 was considered fair, 0.8 to 0.9 good, and ≥ 0.9 excellent. Additionally, a calibration plot and the Brier score were calculated for each model. RESULTS A total of 135 patients (66% female) were included. A total of 38 (28%) patients reported LBP ≥ 4 after 2 years, representing the positive class. The XGBoost model demonstrated the best performance in the validation set with an AUC of 0.81 (95% CI 0.67–0.95). The other machine learning models performed significantly worse: with an AUC of 0.52 (95% CI 0.37–0.68) for the SVM, 0.56 (95% CI 0.37–0.76) for the logistic regression and an AUC of 0.56 (95% CI 0.37–0.78) for the random forest. In the XGBoost model age, composition of the erector spinae, and severity of lumbar spinal stenosis as were identified as the most important features. CONCLUSIONS This study represents a novel approach to predicting surgical outcomes in spinal fusion patients. The XGBoost demonstrated a better performance compared with classical models and highlighted the potential contributions of age and paraspinal musculature atrophy as significant factors. These findings have important implications for enhancing patient care through the identification of high-risk individuals and modifiable risk factors. As the incorporation of machine learning algorithms into clinical decision-making continues to gain traction in research and clinical practice, our insights reinforce this trajectory by showcasing the potential of these techniques in forecasting surgical results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意的念柏应助苹果果汁采纳,获得10
4秒前
5秒前
zz发布了新的文献求助10
5秒前
半糖完成签到 ,获得积分10
6秒前
鱼鱼鱼鱼鱼完成签到 ,获得积分10
13秒前
15秒前
苹果果汁发布了新的文献求助10
20秒前
nito发布了新的文献求助10
30秒前
DGYT7786完成签到 ,获得积分10
35秒前
37秒前
zz发布了新的文献求助10
38秒前
听风完成签到 ,获得积分10
40秒前
彩虹儿应助科研通管家采纳,获得10
43秒前
嘿嘿应助科研通管家采纳,获得10
43秒前
43秒前
徐志豪发布了新的文献求助10
47秒前
天然关注了科研通微信公众号
1分钟前
1分钟前
在水一方应助谨慎天蓝采纳,获得10
1分钟前
夜雨完成签到 ,获得积分10
1分钟前
发C刊的人完成签到 ,获得积分10
1分钟前
xzx完成签到,获得积分10
1分钟前
weibo发布了新的文献求助10
1分钟前
Shawn完成签到 ,获得积分10
1分钟前
端庄一刀完成签到 ,获得积分10
1分钟前
GGbong完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
天然发布了新的文献求助10
1分钟前
1分钟前
葛力发布了新的文献求助30
1分钟前
1分钟前
Sandy完成签到,获得积分0
1分钟前
xzx发布了新的文献求助10
1分钟前
研友_VZG7GZ应助zz采纳,获得10
1分钟前
2分钟前
谨慎天蓝发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4216185
求助须知:如何正确求助?哪些是违规求助? 3750338
关于积分的说明 11795800
捐赠科研通 3415941
什么是DOI,文献DOI怎么找? 1874769
邀请新用户注册赠送积分活动 928655
科研通“疑难数据库(出版商)”最低求助积分说明 837759