已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MambaSAM: A Visual Mamba-Adapted SAM Framework for Medical Image Segmentation

计算机科学 人工智能 计算机视觉 图像分割 分割 图像(数学) 模式识别(心理学) 计算机图形学(图像)
作者
Pengchen Liang,Lei Shi,Bin Pu,Renkai Wu,Jianguo Chen,Lixin Zhou,Liming Xu,Zhuangzhuang Chen,Qing Chang,Yiwei Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2025.3544548
摘要

The Segment Anything Model (SAM) has shown exceptional versatility in segmentation tasks across various natural image scenarios. However, its application to medical image segmentation poses significant challenges due to the intricate anatomical details and domain-specific characteristics inherent in medical images. To address these challenges, we propose a novel VMamba adapter framework that integrates a lightweight, trainable Visual Mamba (VMamba) branch with the pre-trained SAM ViT encoder. The VMamba adapter accurately captures multi-scale contextual correlations, integrates global and local information, and reduces ambiguities arising from local features only. Specifically, we propose a novel cross-branch attention (CBA) mechanism to facilitate effective interaction between the SAM and VMamba branches. This mechanism enables the model to learn and adapt more efficiently to the nuances of medical images, extracting rich, complementary features that enhance its representational capacity. Beyond architectural enhancements, we streamline the segmentation workflow by eliminating the need for prompt-driven input mechanisms. This results in an autonomous prediction model that reduces manual input requirements and improves operational efficiency. In addition, our method introduces only minimal additional trainable parameters, offering an efficient solution for medical image segmentation. Extensive evaluations of four medical image datasets demonstrate that our VMamba adapter framework achieves state-of-the-art performance. Specifically, on the ACDC dataset with limited training data, our method achieves an average Dice coefficient improvement of 0.18 and reduces the Hausdorff distance by 20.38 mm compared to the AutoSAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初七123完成签到 ,获得积分10
刚刚
标致的土豆完成签到,获得积分10
1秒前
科研通AI5应助苹果采纳,获得30
2秒前
3秒前
3秒前
lzt完成签到 ,获得积分10
4秒前
5秒前
shenmizhe完成签到,获得积分10
7秒前
健壮的怜烟应助eee采纳,获得20
8秒前
纸芯完成签到 ,获得积分10
8秒前
啦啦啦啦发布了新的文献求助10
9秒前
激昂的梦山完成签到 ,获得积分10
9秒前
钱多多完成签到,获得积分10
9秒前
大方幻珊给大方幻珊的求助进行了留言
9秒前
阔达的悟空完成签到,获得积分10
11秒前
kkeyanxiaozi完成签到,获得积分10
12秒前
15秒前
15秒前
16秒前
小小旭呀发布了新的文献求助10
17秒前
快乐风松发布了新的文献求助30
18秒前
斯文败类应助噗噗采纳,获得10
19秒前
Genger完成签到,获得积分10
20秒前
Wendy发布了新的文献求助10
20秒前
21秒前
黄黄发布了新的文献求助10
22秒前
兔兔更健康完成签到,获得积分10
23秒前
橙子完成签到,获得积分10
24秒前
江随烨发布了新的文献求助10
25秒前
科研通AI5应助无畏阿玲采纳,获得10
26秒前
小蘑菇应助蒋念寒采纳,获得10
27秒前
踏实的傲白完成签到 ,获得积分10
27秒前
joyway完成签到,获得积分10
27秒前
所所应助黄黄采纳,获得30
32秒前
33秒前
37秒前
39秒前
Esfuerzo发布了新的文献求助10
40秒前
噗噗发布了新的文献求助10
43秒前
典雅冰双发布了新的文献求助10
44秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845336
求助须知:如何正确求助?哪些是违规求助? 3387498
关于积分的说明 10549781
捐赠科研通 3108202
什么是DOI,文献DOI怎么找? 1712516
邀请新用户注册赠送积分活动 824405
科研通“疑难数据库(出版商)”最低求助积分说明 774776