First high‐resolution vertical‐looking radar for long‐term automatic observation of high‐flying insects in Asia

雷达 攀登 鉴定(生物学) 遥感 计算机科学 环境科学 生态学 生物 地理 工程类 电信 航空航天工程
作者
Hongqiang Feng
出处
期刊:Pest Management Science [Wiley]
标识
DOI:10.1002/ps.8773
摘要

Abstract BACKGROUND The increasing occurrence of migrant insect pests poses a serious threat to the sustainability of agriculture and to food security. Continuous monitoring of high‐flying insects plays a crucial role in developing effective pest management strategies and implementing successful control measures. RESULTS The present study established vertical‐looking radar (VLR) monitoring of insects in Henan Province, China, with a unit incorporating up‐to‐date high frequency digitization technology and rapid target‐finding procedures. This radar produced detailed information on target identification (size, shape, wingbeat frequency) and flight behavior (flight time, height, track speed, track direction, body alignment, and climb rate) for insects flying at altitudes of from 70 m to 1810 m above the ground. The lowest detection range for insects is lower than that (150 m) normal in previous VLR systems. The VLR‐inferred tracking of small insects could also provide accurate estimates of wind velocity. CONCLUSION The VLR achieved long‐term automatic observation of high‐flying insects for the first time in Asia. This provided a unique tool for automatic long‐term monitoring of high‐flying insects to help to answer some basic scientific questions, such as the impacts of climate change on insect populations, and provide surveillance information for insect pest control in this region. The three‐step target identification method and the performance calibration protocol for the VLR established in this study are both straightforward and reliable. These methods can be easily implemented and adapted for use in other settings, making them valuable tools for enhancing radar‐based entomological research and monitoring. © 2025 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
卷心菜完成签到,获得积分10
1秒前
FashionBoy应助ZLP采纳,获得30
1秒前
斯文败类应助不想做实验采纳,获得10
2秒前
3秒前
jkq发布了新的文献求助10
3秒前
张紫茹发布了新的文献求助10
4秒前
yikiann发布了新的文献求助10
4秒前
大个应助炙热的茈采纳,获得10
4秒前
Ste完成签到,获得积分10
5秒前
5秒前
cheche发布了新的文献求助10
6秒前
斯文败类应助走走采纳,获得10
6秒前
6秒前
太昊陵完成签到,获得积分10
6秒前
April完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
10秒前
zyd发布了新的文献求助30
10秒前
CodeCraft应助yikiann采纳,获得10
10秒前
10秒前
zhancon完成签到,获得积分10
11秒前
君君发布了新的文献求助10
11秒前
这小猪真帅完成签到,获得积分10
12秒前
majf发布了新的文献求助10
12秒前
13秒前
李健的小迷弟应助太渊采纳,获得10
13秒前
heavenhorse应助岁岁采纳,获得30
13秒前
14秒前
山阳县藏兵洞谷二完成签到,获得积分10
14秒前
gaga完成签到,获得积分10
14秒前
xxxka发布了新的文献求助10
15秒前
zhancon发布了新的文献求助10
15秒前
LiClMn完成签到 ,获得积分10
15秒前
15秒前
15秒前
a553355完成签到,获得积分10
16秒前
Orange应助lopik采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496326
求助须知:如何正确求助?哪些是违规求助? 4594041
关于积分的说明 14443302
捐赠科研通 4526660
什么是DOI,文献DOI怎么找? 2480274
邀请新用户注册赠送积分活动 1464895
关于科研通互助平台的介绍 1437685