准静态过程
计算机科学
卷积神经网络
原始数据
连贯性(哲学赌博策略)
数据提取
人工智能
弹性成像
数据采集
数据处理
人工神经网络
数据挖掘
机器学习
模式识别(心理学)
数学
数据库
统计
物理
量子力学
声学
超声波
操作系统
梅德林
政治学
法学
程序设计语言
作者
Achuth Nair,Manmohan Singh,Salavat R. Aglyamov,Kirill V. Larin
标识
DOI:10.1002/jbio.202400386
摘要
ABSTRACT Assessing the biomechanical properties of tissues can provide important information for disease diagnosis and therapeutic monitoring. Optical coherence elastography (OCE) is an emerging technology for measuring the biomechanical properties of tissues. Clinical translation of this technology is underway, and steps are being implemented to streamline data collection and processing. OCE data can be noisy, data processing can require significant manual tuning, and a single acquisition may contain gigabytes of data. In this work, we introduce a convolutional neural network‐based method to translate raw OCE phase data to strain for quasistatic OCE that is ~40X faster than the conventional least squares approach by bypassing many intermediate data processing steps. The results suggest that a machine learning approach may be a valuable tool for fast, efficient, and accurate extraction of biomechanical information from raw OCE data.
科研通智能强力驱动
Strongly Powered by AbleSci AI