亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sepsis Important Genes Identification Through Biologically Informed Deep Learning and Transcriptomic Analysis

败血症 免疫系统 基因 转录组 生物 时间1 坏死性下垂 免疫学 基因表达 程序性细胞死亡 遗传学 细胞凋亡
作者
Ruichen Li,Qiushi Wang,Ru Gao,Rhine R. Shen,Qiu-Jun Wang,Xiuliang Cui,Zhiming Jiang,Lijie Zhang,Jingjing Fang
出处
期刊:Clinical and Experimental Pharmacology and Physiology [Wiley]
卷期号:52 (7)
标识
DOI:10.1111/1440-1681.70031
摘要

ABSTRACT Sepsis is a life‐threatening disease caused by the dysregulation of the immune response. It is important to identify influential genes modulating the immune response in sepsis. In this study, we used P‐NET, a biologically informed explainable artificial intelligence model, to evaluate the gene importance for sepsis. About 688 important genes were identified, and these genes were enriched in pathways involved in inflammation and immune regulation, such as the PI3K‐Akt signalling pathway, necroptosis and the NF‐κB signalling pathway. We further selected differentially expressed genes both at bulk and single‐cell levels and found TIMP1, GSTO1 and MYL6 exhibited significant different expressions in multiple cell types. Moreover, the expression levels of these 3 genes were correlated with the abundance of important immune cells, such as M‐MDSC cells. Further analysis demonstrated that these three genes were highly expressed in sepsis patients with worse outcomes, such as severe, non‐survived and shock sepsis patients. Using a drug repositioning strategy, we found navitoclax, curcumin and rotenone could down‐regulate and bind to these genes. In conclusion, TIMP1, GSTO1 and MYL6 may serve as promising biomarkers and targets for sepsis treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
9秒前
14秒前
17秒前
asd1576562308完成签到 ,获得积分10
18秒前
20秒前
23秒前
负责惊蛰完成签到 ,获得积分10
24秒前
25秒前
30秒前
量子星尘发布了新的文献求助10
35秒前
36秒前
39秒前
42秒前
咕咕咕完成签到 ,获得积分10
45秒前
PhD_Lee73完成签到 ,获得积分10
48秒前
50秒前
谦让的西装完成签到 ,获得积分10
50秒前
56秒前
Boren完成签到,获得积分10
1分钟前
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
YU完成签到,获得积分20
1分钟前
1分钟前
1分钟前
科研通AI5应助小丑采纳,获得10
1分钟前
1分钟前
汉堡包应助lk_xx采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
YU发布了新的文献求助10
1分钟前
Majarichy发布了新的文献求助10
1分钟前
1分钟前
lk_xx发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3889345
求助须知:如何正确求助?哪些是违规求助? 3431472
关于积分的说明 10774149
捐赠科研通 3156546
什么是DOI,文献DOI怎么找? 1743163
邀请新用户注册赠送积分活动 841554
科研通“疑难数据库(出版商)”最低求助积分说明 785977