Spatiotemporal Evolution Patterns of Global Actual Evapotranspiration and Its Influencing Factors

蒸散量 环境科学 地理 环境资源管理 生态学 生物
作者
Haoyu Jin,Ke Zhang,Yiming Huang,Pengfei Zhang,Liu Guo-yan,Moyang Liu
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:130 (10)
标识
DOI:10.1029/2024jd042515
摘要

Abstract Understanding the spatiotemporal dynamics of actual evapotranspiration (AET) and its drivers is critical for addressing climate change and ensuring ecosystem sustainability. Here, we analyzed global AET trends from 2001 to 2019 and assessed the relative contributions of six key influencing factors. Our findings reveal that AET exhibits a significant positive trend across 31.6% of the global land surface, predominantly in the Amazon Plain and the Loess Plateau of China, whereas a significant negative trend is observed over 5.2% of the land area, concentrated in eastern Brazil and southern Africa. The normalized difference vegetation index (NDVI) showed the strongest partial correlation with AET, influencing 26.6% of the global land area. Multiple linear regression (MLR) analysis indicates that precipitation exerts the greatest influence on AET in 39.9% of the world, followed by wind speed (WS) at 37.9%, while soil moisture (SM) is the dominant factor in only 0.2% of the global land area. Notably, WS drives 23.5% of the observed AET trends, whereas precipitation contributes most to trends in just 8.6% of the land area. Among the factors evaluated, NDVI emerges as the primary driver of AET changes, followed by precipitation, while surface net solar radiation (SNSR) has the weakest influence. These insights advance the understanding of global AET's spatiotemporal evolution and its driving mechanisms, offering a foundation for devising adaptive strategies to mitigate climate change impacts and enhance ecosystem resilience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助负责御姐采纳,获得10
2秒前
量子星尘发布了新的文献求助20
3秒前
SciGPT应助izumi采纳,获得10
8秒前
核桃应助完美醉波采纳,获得10
8秒前
CipherSage应助下弦月采纳,获得10
12秒前
乐乐应助下弦月采纳,获得10
12秒前
小马甲应助下弦月采纳,获得10
12秒前
Percy完成签到 ,获得积分10
14秒前
14秒前
堪曼凝发布了新的文献求助10
17秒前
蛋堡完成签到 ,获得积分10
19秒前
白河应助oo采纳,获得30
21秒前
烟花应助lsh采纳,获得10
21秒前
丘比特应助小刘采纳,获得10
22秒前
23秒前
25秒前
整齐乐荷完成签到,获得积分10
25秒前
27秒前
SJD完成签到,获得积分0
27秒前
28秒前
英俊白莲发布了新的文献求助50
30秒前
无限的寄真完成签到 ,获得积分10
30秒前
31秒前
33秒前
漂亮绮彤发布了新的文献求助20
33秒前
ash发布了新的文献求助10
33秒前
张焕应助xtb采纳,获得10
33秒前
小刘发布了新的文献求助10
34秒前
Xiang发布了新的文献求助10
36秒前
彭于晏应助执着的采枫采纳,获得100
36秒前
38秒前
38秒前
积极问晴完成签到,获得积分10
39秒前
39秒前
40秒前
11111关注了科研通微信公众号
40秒前
万能图书馆应助曾建采纳,获得10
41秒前
华仔应助mary采纳,获得10
42秒前
红烧肉完成签到,获得积分10
42秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3866512
求助须知:如何正确求助?哪些是违规求助? 3408979
关于积分的说明 10660833
捐赠科研通 3133027
什么是DOI,文献DOI怎么找? 1727985
邀请新用户注册赠送积分活动 832625
科研通“疑难数据库(出版商)”最低求助积分说明 780320