Breast Ultrasound Image Segmentation Using Multi-branch Skip Connection Search

计算机科学 分割 编码器 卷积神经网络 人工智能 模式识别(心理学) Softmax函数 人工神经网络 图像分割 操作系统
作者
Yue Wu,Lin Huang,Tiejun Yang
标识
DOI:10.1007/s10278-025-01487-6
摘要

To reduce the cost of designing neural networks and improve the accuracy of breast ultrasound image segmentation, an encoder-decoder neural network architecture search method is proposed, tailored for constructing segmentation models automatically. Initially, a multi-branch skip connection module is designed in which each branch utilizes distinct operations to extract features of varying scales and types from subsets of channels. Subsequently, a learnable operation weight search strategy is introduced that employs Gumbel-Softmax for reparameterizing discrete operation weights. This strategy explores optimal operations within the multi-branch skip connection module through both shared and non-shared methodologies. The candidate neural networks incorporate encoder-decoder block pairs that utilize the Swin Transformer from Swin-Unet and convolutional blocks from TransUNet, respectively. Experimental results demonstrate that the method identifies the optimal encoder-decoder model in approximately two hours. The automatically constructed model achieves superior segmentation accuracy, with Dice scores of approximately 85.94% and 84.44% on the BUSI and OASBUD datasets, respectively. It outperforms state-of-the-art (SOTA) methods such as AAU-Net, SK-U-Net, and TransUNet. High-precision segmentation results offer clear localization of lesion boundaries, thereby reducing the risk of missed diagnoses. The model's quantitative metrics, such as lesion area and morphology, can be seamlessly incorporated into diagnostic reports, facilitating the development of personalized treatment plans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lulu666完成签到 ,获得积分10
刚刚
刚刚
11完成签到,获得积分10
1秒前
1秒前
2秒前
Yufan完成签到 ,获得积分10
2秒前
李健应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
小飞飞应助科研通管家采纳,获得20
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
故意的勒完成签到,获得积分10
4秒前
希望天下0贩的0应助11采纳,获得10
4秒前
共享精神应助兴奋天蓉采纳,获得10
6秒前
bean发布了新的文献求助10
6秒前
科研通AI5应助史蓓蓓采纳,获得10
8秒前
8秒前
李健的小迷弟应助11采纳,获得10
8秒前
8秒前
season发布了新的文献求助20
8秒前
lili完成签到,获得积分10
9秒前
9秒前
科研通AI5应助炙热静白采纳,获得10
10秒前
kimoto完成签到 ,获得积分10
12秒前
13秒前
bean完成签到,获得积分10
14秒前
伶俐夏兰完成签到 ,获得积分10
14秒前
大模型应助en采纳,获得10
15秒前
15秒前
16秒前
小可爱发布了新的文献求助10
18秒前
19秒前
隐形曼青应助幻想之地Home采纳,获得10
19秒前
20秒前
aqua发布了新的文献求助10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784379
求助须知:如何正确求助?哪些是违规求助? 3329392
关于积分的说明 10242191
捐赠科研通 3044907
什么是DOI,文献DOI怎么找? 1671397
邀请新用户注册赠送积分活动 800264
科研通“疑难数据库(出版商)”最低求助积分说明 759342