Semi‐supervised medical image segmentation based on dual swap data mixing and cross EMA strategies

掉期(金融) 计算机科学 分割 人工智能 标记数据 合成数据 模式识别(心理学) 机器学习 数据挖掘 财务 经济
作者
Licheng Zheng,Lihui Wang,Yingfeng Ou,Li Wang,Caiqing Jian,Yuemin Zhu,Caiqing Jian,Yuemin Zhu
出处
期刊:Medical Physics [Wiley]
卷期号:52 (6): 4480-4497 被引量:1
标识
DOI:10.1002/mp.17809
摘要

Abstract Background Semi‐supervised medical image segmentation methods based on mean teacher (MT) framework provide a promising means for addressing the dense prediction problems with limited annotated images and numerous unlabeled images. However, the confirmation bias caused by the distribution difference between labeled and unlabeled data and the parameters‐coupling problem of MT prevent the model from further improving the segmentation performance. Purpose To reduce confirmation bias and alleviate the parameter coupling problem in MT framework, a novel data augmentation strategy and a cross exponential moving averaging (crossEMA) architecture are proposed in this work. Methods Specifically, a dual swap mixing data augmentation method was first proposed, which exchanges the patches between labeled and unlabeled images twice to decrease the confirmation bias caused by distribution divergency. Subsequently, a novel architecture for both student and teacher networks was designed with structurally identical dual decoders, one of which adopted a dropout operation. Labeled, unlabeled, and mixed images are fed into this MT architecture. For unlabeled data, the pseudo‐labels generated by the dual decoders of the teacher network were used to supervise the predictions of the corresponding decoders of the student network. For mixed data, the real labels of the labeled data are mixed with the pseudo‐labels of the unlabeled data predicted by the teacher network to form the supervisory information, which is used to constrain the prediction consistency for mixed data between student and teacher networks. To overcome the parameter coupling problem between the student and teacher networks, the encoder parameters of the teacher network were updated using an exponential moving average (EMA) strategy, while its dual decoder parameters were updated using a cross EMA strategy, which means the perturbed decoder parameters of the student network were updated with the non‐perturbed decoder parameters of the student network and vice versa. Results By comparing with several state‐of‐the‐art (SOTA) semi‐supervised segmentation methods on four publicly available datasets, we validated that the proposed method outperforms existing models. The Dice similarity coefficient (DSC) and volume similarity (VS) were improved by at least 2.33% and 1.86%, respectively, compared to the corresponding sub‐optimal methods. Through multiple ablation experiments, we verified that the proposed dual swap strategy can reduce the distributional differences between unlabeled data and labeled+mixed data. In addition, the cross EMA strategy can avoid early convergence of the student and teacher networks. Conclusions The proposed strategies can alleviate the confirmation bias caused by the distribution discrepancy between labeled and unlabeled data in semi‐supervised learning, as well as the issue of parameter coupling between the student and teacher networks in the MT architecture, providing therefore a promising approach to semi‐supervised medical image segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
班小班完成签到,获得积分10
1秒前
激情的白玉关注了科研通微信公众号
1秒前
2秒前
脑洞疼应助美女采纳,获得10
2秒前
大模型应助开心的秋天采纳,获得10
2秒前
3秒前
Lignin发布了新的文献求助10
3秒前
小陈完成签到 ,获得积分10
3秒前
有点儿发布了新的文献求助10
5秒前
Jasper应助jige采纳,获得10
6秒前
大麦发布了新的文献求助10
7秒前
komorebi发布了新的文献求助10
7秒前
8秒前
爆米花应助黄少阳采纳,获得10
10秒前
科研通AI6.1应助冬天败采纳,获得10
11秒前
xiyu完成签到,获得积分10
12秒前
大麦完成签到,获得积分10
12秒前
12秒前
芋泥啵啵发布了新的文献求助20
13秒前
14秒前
14秒前
15秒前
你好发布了新的文献求助10
15秒前
单纯海蓝完成签到,获得积分10
16秒前
17秒前
cclyfan完成签到,获得积分10
18秒前
千互发布了新的文献求助30
19秒前
19秒前
19秒前
19秒前
19秒前
Wang发布了新的文献求助10
19秒前
ding应助Humble采纳,获得10
19秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
Hello应助科研通管家采纳,获得10
20秒前
传奇3应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
21秒前
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736751
求助须知:如何正确求助?哪些是违规求助? 5368102
关于积分的说明 15333909
捐赠科研通 4880517
什么是DOI,文献DOI怎么找? 2622883
邀请新用户注册赠送积分活动 1571780
关于科研通互助平台的介绍 1528601