结束语(心理学)
心脏病学
材料科学
主动脉瓣
内科学
机械
医学
物理
经济
市场经济
作者
Syed Samar Abbas,Hossein Asadi,Iman Borazjani
摘要
The function of aortic heart valves is to prevent regurgitant flow from the aorta into the left ventricle. A higher regurgitant flow is observed in bileaflet mechanical heart valves (BMHVs) compared with bioprosthetic heart valves (BHVs) because of their delayed closure. Here, we investigate this behaviour through fluid–structure interaction simulations of a BMHV compared with a trileaflet mechanical heart valve (TMHV) and a BHV under similar conditions. We find that the TMHV and BHV begin to close during the systolic deceleration, whereas BMHV only begins to close when the flow reverses. We found this to be related to hemodynamics as the TMHV and BHV, when fully opened, generate a central jet-dominant flow, whereas the BMHV generates triple jets with lateral jets being wider than its central jet. The flow deceleration of the central jet during late systole is higher than that of the sinuses, which results in a lower pressure in the central region than the sinuses to drive the leaflets of the TMHV and BHV towards the centre for closure. Conversely, the pressure on the sinus- and central flow-sides of the BMHV leaflets is nearly the same until the end of systole. We, contrary to what classically believed, did not find any evidence of sinus vortices generating high pressure or viscous stresses to initiate valve closure. Overall, the results suggest that the generation of a strong central jet and the direction of the leaflets’ closure towards the centre are the design principles to ensure an early valve closure and minimise regurgitation.
科研通智能强力驱动
Strongly Powered by AbleSci AI