Directed Weighted EEG Connectogram Insights of One-To-One Causality for Identifying Developmental Dyslexia

发展性阅读障碍 脑电图 诵读困难 因果关系(物理学) 计算机科学 心理学 人工智能 语音识别 认知心理学 神经科学 阅读(过程) 语言学 哲学 物理 量子力学
作者
Ignacio Rodríguez‐Rodríguez,José Ignacio Mateo-Trujillo,Andrés Ortíz,Nicolás J. Gallego-Molina,Diego Castillo-Barnés,Juan L. Luque
出处
期刊:International Journal of Neural Systems [World Scientific]
标识
DOI:10.1142/s0129065725500327
摘要

Developmental dyslexia (DD) affects approximately 5-12% of learners, posing persistent challenges in reading and writing. This study presents a novel electroencephalography (EEG)-based methodology for identifying DD using two auditory stimuli modulated at 4.8[Formula: see text]Hz (prosodic) and 40[Formula: see text]Hz (phonemic). EEG signals were processed to estimate one-to-one Granger causality, yielding directed and weighted connectivity matrices. A novel Mutually Informed Correlation Coefficient (MICC) feature selection method was employed to identify the most relevant causal links, which were visualized using connectograms. Under the 4.8[Formula: see text]Hz stimulus, altered theta-band connectivity between frontal and occipital regions indicated compensatory frontal activation for prosodic processing and visual-auditory integration difficulties, while gamma-band anomalies between occipital and temporal regions suggested impaired visual-prosodic integration. Classification analysis under the 4.8[Formula: see text]Hz stimulus yielded area under the ROC curve (AUC) values of 0.92 (theta) and 0.91 (gamma band). Under the 40[Formula: see text]Hz stimulus, theta abnormalities reflected dysfunctions in integrating auditory phoneme signals with executive and motor regions, and gamma alterations indicated difficulties coordinating visual and auditory inputs for phonological decoding, with AUC values of 0.84 (theta) and 0.89 (gamma). These results support both the Temporal Sampling Framework and the Phonological Core Deficit Hypothesis. Future research should extend the range of stimuli frequencies and include more diverse cohorts to further validate these potential biomarkers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lh完成签到,获得积分10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
羊毛毛衣完成签到,获得积分10
刚刚
打打应助科研通管家采纳,获得10
刚刚
Eos完成签到 ,获得积分10
1秒前
1秒前
危机的小丸子完成签到 ,获得积分10
1秒前
1秒前
重要问旋完成签到,获得积分10
1秒前
若尘完成签到,获得积分10
1秒前
开心的纸鹤完成签到,获得积分10
1秒前
yjzzz完成签到,获得积分10
1秒前
1秒前
zyfzyf完成签到,获得积分10
2秒前
Trista完成签到,获得积分10
2秒前
huhuhu完成签到 ,获得积分10
2秒前
lonelycube完成签到 ,获得积分10
2秒前
啦啦啦啦啦完成签到,获得积分10
2秒前
杰哥完成签到,获得积分10
2秒前
3秒前
赘婿应助夜泊采纳,获得10
3秒前
RebeccaHe完成签到,获得积分10
3秒前
Snow完成签到 ,获得积分10
3秒前
3秒前
郑宇轩关注了科研通微信公众号
4秒前
73Jennie123完成签到,获得积分10
4秒前
coco发布了新的文献求助10
4秒前
Akim应助gdh采纳,获得10
5秒前
可以完成签到,获得积分10
5秒前
ZZ完成签到,获得积分10
6秒前
WUXIN完成签到,获得积分10
6秒前
DD发布了新的文献求助10
6秒前
夏天就是桃子味完成签到,获得积分10
6秒前
feng完成签到,获得积分10
7秒前
喜之郎完成签到,获得积分10
7秒前
msp发布了新的文献求助10
7秒前
未来的幻想完成签到,获得积分10
8秒前
大壮完成签到,获得积分10
8秒前
十三月发布了新的文献求助10
8秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
The Oxford Handbook of Video Game Music and Sound 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827518
求助须知:如何正确求助?哪些是违规求助? 3369808
关于积分的说明 10458344
捐赠科研通 3089517
什么是DOI,文献DOI怎么找? 1699957
邀请新用户注册赠送积分活动 817567
科研通“疑难数据库(出版商)”最低求助积分说明 770269