Machine Learning-Based Prediction Models for Healthcare Outcomes in Patients Participating in Cardiac Rehabilitation

医学 检查表 接收机工作特性 批判性评价 康复 医疗保健 预测建模 斯科普斯 梅德林 临床实习 机器学习 人工智能 物理疗法 计算机科学 内科学 替代医学 病理 经济增长 经济 心理学 政治学 法学 认知心理学
作者
Xiarepati Tieliwaerdi,Kathryn Manalo,Abulikemu Abuduweili,Sana Khan,Edmund Appiah-Kubi,Brent A. Williams,Andrew Oehler
出处
期刊:Journal of Cardiopulmonary Rehabilitation and Prevention [Lippincott Williams & Wilkins]
标识
DOI:10.1097/hcr.0000000000000943
摘要

Purpose: Cardiac rehabilitation (CR) has been proven to reduce mortality and morbidity in patients with cardiovascular disease. Machine learning (ML) techniques are increasingly used to predict healthcare outcomes in various fields of medicine including CR. This systemic review aims to perform critical appraisal of existing ML-based prognosis predictive model within CR and identify key research gaps in this area. Review Methods: A systematic literature search was conducted in Scopus, PubMed, Web of Science, and Google Scholar from the inception of each database to January 28, 2024. The data extracted included clinical features, predicted outcomes, model development, and validation as well as model performance metrics. Included studies underwent quality assessments using the IJMEDI and Prediction Model Risk of Bias Assessment Tool checklist. Summary: A total of 22 ML-based clinical models from 7 studies across multiple phases of CR were included. Most models were developed using smaller patient cohorts from 41 to 227, with one exception involving 2280 patients. The prediction objectives ranged from patient intention to initiate CR to graduate from outpatient CR along with interval physiological and psychological progression in CR. The best-performing ML models reported area under the receiver operating characteristics curve between 0.82 and 0.91, with sensitivity from 0.77 to 0.95, indicating good prediction capabilities. However, none of them underwent calibration or external validation. Most studies raised concerns about bias. Readiness of these models for implementation into practice is questionable. External validation of existing models and development of new models with robust methodology based on larger populations and targeting diverse clinical outcomes in CR are needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alexbirchurros完成签到 ,获得积分10
刚刚
aaa完成签到,获得积分10
1秒前
Orange应助Quinta采纳,获得30
2秒前
科研通AI2S应助博修采纳,获得10
3秒前
欣欣发布了新的文献求助10
4秒前
伍小颖酱发布了新的文献求助10
5秒前
小林完成签到,获得积分10
6秒前
活力契完成签到,获得积分10
6秒前
悦yue完成签到,获得积分10
9秒前
fufufufu完成签到,获得积分10
11秒前
hzl完成签到,获得积分10
12秒前
伍小颖酱完成签到,获得积分10
13秒前
18秒前
lili完成签到 ,获得积分10
18秒前
19秒前
万能图书馆应助chengxiang采纳,获得10
20秒前
20秒前
23秒前
博修发布了新的文献求助10
24秒前
Rheanna发布了新的文献求助10
25秒前
26秒前
怎么会睡不醒完成签到 ,获得积分10
27秒前
28秒前
Quinta发布了新的文献求助30
29秒前
Rheanna完成签到,获得积分10
31秒前
HANGHANG完成签到,获得积分10
31秒前
Pan发布了新的文献求助10
32秒前
乐观的眼睛完成签到,获得积分10
32秒前
JeromeLi发布了新的文献求助30
32秒前
AFM发布了新的文献求助10
34秒前
谔谔完成签到,获得积分10
38秒前
39秒前
嘿嘿发布了新的文献求助10
41秒前
happy贼王发布了新的文献求助10
43秒前
Pan完成签到,获得积分10
45秒前
46秒前
Jasper应助ljs采纳,获得10
49秒前
Jane完成签到,获得积分10
52秒前
TRY发布了新的文献求助10
52秒前
城南她似海完成签到 ,获得积分10
53秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823536
求助须知:如何正确求助?哪些是违规求助? 3365885
关于积分的说明 10438093
捐赠科研通 3085082
什么是DOI,文献DOI怎么找? 1697128
邀请新用户注册赠送积分活动 816235
科研通“疑难数据库(出版商)”最低求助积分说明 769462