Identifying Data-Driven Clinical Subgroups for Cervical Cancer Prevention With Machine Learning: Population-Based, External, and Diagnostic Validation Study

宫颈癌 医学 人口 癌症预防 医学物理学 机器学习 癌症 计算机科学 人工智能 环境卫生 内科学
作者
Zhen Lu,Binhua Dong,Hongning Cai,Tian Tian,Junfeng Wang,Leiwen Fu,Bingyi Wang,Weijie Zhang,Shanshan Lin,Xunyuan Tuo,Juntao Wang,Tianjie Yang,Xin-xin Huang,Zheng Zheng,Huifeng Xue,Shuxia Xu,Siyang Liu,Pengming Sun,Huachun Zou
出处
期刊:JMIR public health and surveillance [JMIR Publications]
卷期号:11: e67840-e67840
标识
DOI:10.2196/67840
摘要

Cervical cancer remains a major global health issue. Personalized, data-driven cervical cancer prevention (CCP) strategies tailored to phenotypic profiles may improve prevention and reduce disease burden. This study aimed to identify subgroups with differential cervical precancer or cancer risks using machine learning, validate subgroup predictions across datasets, and propose a computational phenomapping strategy to enhance global CCP efforts. We explored the data-driven CCP subgroups by applying unsupervised machine learning to a deeply phenotyped, population-based discovery cohort. We extracted CCP-specific risks of cervical intraepithelial neoplasia (CIN) and cervical cancer through weighted logistic regression analyses providing odds ratio (OR) estimates and 95% CIs. We trained a supervised machine learning model and developed pathways to classify individuals before evaluating its diagnostic validity and usability on an external cohort. This study included 551,934 women (median age, 49 years) in the discovery cohort and 47,130 women (median age, 37 years) in the external cohort. Phenotyping identified 5 CCP subgroups, with CCP4 showing the highest carcinoma prevalence. CCP2-4 had significantly higher risks of CIN2+ (CCP2: OR 2.07 [95% CI: 2.03-2.12], CCP3: 3.88 [3.78-3.97], and CCP4: 4.47 [4.33-4.63]) and CIN3+ (CCP2: 2.10 [2.05-2.14], CCP3: 3.92 [3.82-4.02], and CCP4: 4.45 [4.31-4.61]) compared to CCP1 (P<.001), consistent with the direction of results observed in the external cohort. The proposed triple strategy was validated as clinically relevant, prioritizing high-risk subgroups (CCP3-4) for colposcopies and scaling human papillomavirus screening for CCP1-2. This study underscores the potential of leveraging machine learning algorithms and large-scale routine electronic health records to enhance CCP strategies. By identifying key determinants of CIN2+/CIN3+ risk and classifying 5 distinct subgroups, our study provides a robust, data-driven foundation for the proposed triple strategy. This approach prioritizes tailored prevention efforts for subgroups with varying risks, offering a novel and scalable tool to complement existing cervical cancer screening guidelines. Future work should focus on independent external and prospective validation to maximize the global impact of this strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
zjz发布了新的文献求助10
刚刚
风至完成签到,获得积分10
刚刚
未来へ完成签到 ,获得积分10
3秒前
充电宝应助赖赖在做科研采纳,获得20
5秒前
wangwenzhe发布了新的文献求助10
5秒前
善良的剑通应助AoAoo采纳,获得10
6秒前
酷波er应助奂锐123采纳,获得10
10秒前
qiuyang发布了新的文献求助10
11秒前
14秒前
15秒前
科研通AI5应助wangwenzhe采纳,获得10
16秒前
16秒前
行走De太阳花完成签到,获得积分10
16秒前
17秒前
秀丽笑容发布了新的文献求助10
19秒前
AoAoo发布了新的文献求助10
19秒前
Zhe发布了新的文献求助10
20秒前
知止发布了新的文献求助10
20秒前
21秒前
rainsy完成签到,获得积分10
23秒前
27秒前
哈哈完成签到,获得积分10
28秒前
义气珩完成签到,获得积分10
29秒前
友好惜儿完成签到 ,获得积分10
30秒前
知止完成签到,获得积分10
30秒前
31秒前
susu完成签到,获得积分10
32秒前
月潮共生完成签到 ,获得积分10
33秒前
调皮冰旋完成签到,获得积分20
33秒前
34秒前
小雨堂完成签到 ,获得积分10
34秒前
35秒前
天天快乐应助Zhe采纳,获得10
35秒前
shenglll发布了新的文献求助20
36秒前
调皮冰旋发布了新的文献求助10
36秒前
情怀应助科研通管家采纳,获得10
36秒前
科研通AI5应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782096
求助须知:如何正确求助?哪些是违规求助? 3327562
关于积分的说明 10232109
捐赠科研通 3042513
什么是DOI,文献DOI怎么找? 1670006
邀请新用户注册赠送积分活动 799585
科研通“疑难数据库(出版商)”最低求助积分说明 758825