Population-Wide Depression Incidence Forecasting Comparing Autoregressive Integrated Moving Average and Vector Autoregressive Integrated Moving Average to Temporal Fusion Transformers: Longitudinal Observational Study

自回归积分移动平均 单变量 统计 人口 多元统计 计量经济学 时间序列 计算机科学 数学 人口学 社会学
作者
Deliang Yang,Yiyi Tang,Vivien Kin Yi Chan,Qiwen Fang,Sandra Sau Man Chan,Hao Luo,Ian Chi Kei Wong,Huang‐Tz Ou,Esther W. Chan,David Bishai,Yingyao Chen,Martín Knapp,Mark Jit,Dawn Craig,Xue Li
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e67156-e67156 被引量:2
标识
DOI:10.2196/67156
摘要

Background Accurate prediction of population-wide depression incidence is vital for effective public mental health management. However, this incidence is often influenced by socioeconomic factors, such as abrupt events or changes, including pandemics, economic crises, and social unrest, creating complex structural break scenarios in the time-series data. These structural breaks can affect the performance of forecasting methods in various ways. Therefore, understanding and comparing different models across these scenarios is essential. Objective This study aimed to develop depression incidence forecasting models and compare the performance of autoregressive integrated moving average (ARIMA) and vector-ARIMA (VARIMA) and temporal fusion transformers (TFT) under different structural break scenarios. Methods We developed population-wide depression incidence forecasting models and compared the performance of ARIMA and VARIMA-based methods to TFT-based methods. Using monthly depression incidence from 2002 to 2022 in Hong Kong, we applied sliding windows to segment the whole time series into 72 ten-year subsamples. The forecasting models were trained, validated, and tested on each subsample. Within each 10-year subset, the first 7 years were used for training, with the eighth year for setting hold-out validation, and the ninth and tenth years for testing. The accuracy of the testing set within each 10-year subsample was measured by symmetric mean absolute percentage error (SMAPE). Results We found that in subsamples without significant slope or trend change (structural break), multivariate TFT significantly outperformed univariate TFT, vector-ARIMA (VARIMA), and ARIMA, with an average SMAPE of 11.6% compared to 13.2% (P=.01) for univariate TFT, 16.4% (P=.002) for VARIMA, and 14.8% (P=.003) for ARIMA. Adjusting for the unemployment rate improved TFT performance more effectively than VARIMA. When fluctuating outbreaks happened, TFT was more robust to sharp interruptions, whereas VARIMA and ARIMA performed better when incidence surged and remained high. Conclusions This study provides a comparative evaluation of TFT and ARIMA and VARIMA models for forecasting depression incidence under various structural break scenarios, offering insights into predicting disease burden during both stable and unstable periods. The findings support a decision-making framework for model selection based on the nature of disruptions and data characteristics. For public health policymaking, the results suggest that TFT may be a more suitable tool for disease burden forecasting during periods of stable burden level or when sudden temporary interruption, such as pandemics or socioeconomic variation, impacts disease occurrence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
1秒前
云ch完成签到,获得积分10
1秒前
1秒前
aonan完成签到,获得积分10
1秒前
Criminology34应助2633148059采纳,获得10
1秒前
李爱国应助francesliu采纳,获得10
1秒前
时光的逗号完成签到,获得积分10
2秒前
2秒前
离开时是天命完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
英俊的铭应助Tonald Yang采纳,获得10
3秒前
浅唱完成签到,获得积分10
4秒前
安和大桥完成签到,获得积分10
4秒前
失眠的霸完成签到,获得积分10
4秒前
wuxin完成签到,获得积分10
5秒前
FceEar完成签到,获得积分10
5秒前
虚幻白桃完成签到,获得积分10
6秒前
melosy完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
努力向上的小刘完成签到 ,获得积分10
8秒前
蓝天黄土完成签到,获得积分10
8秒前
anna1992发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
sober完成签到,获得积分10
8秒前
tangzl完成签到 ,获得积分10
8秒前
研友_VZG7GZ应助小土采纳,获得20
9秒前
勤劳的科研小蜜蜂完成签到,获得积分10
9秒前
顺鑫完成签到 ,获得积分10
11秒前
12秒前
DuanJN发布了新的文献求助10
12秒前
积极冷霜完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5765205
求助须知:如何正确求助?哪些是违规求助? 5559522
关于积分的说明 15407703
捐赠科研通 4900027
什么是DOI,文献DOI怎么找? 2636147
邀请新用户注册赠送积分活动 1584368
关于科研通互助平台的介绍 1539610