Prognostic impact of nutritional indicators based on Lasso-Cox regression for non-muscle-invasive bladder cancer

Lasso(编程语言) 比例危险模型 膀胱癌 癌症 医学 回归 回归分析 肿瘤科 内科学 计算机科学 统计 机器学习 数学 万维网
作者
Junjiang Ye,Yandong Xie,Biao Ran,Ping Han
出处
期刊:Frontiers in Nutrition [Frontiers Media SA]
卷期号:12: 1560655-1560655 被引量:2
标识
DOI:10.3389/fnut.2025.1560655
摘要

Background There is a lack of prognostic models to predict the outcomes of non-muscle-invasive bladder cancer (NMIBC) patients receiving Bacillus Calmette-Guérin (BCG) immunotherapy. Existing nutritional risk indicators, such as the prognostic nutritional index (PNI), geriatric nutritional risk index (GNRI) and Naples prognostic score (NPS), have demonstrated prognostic value in various malignancies. This study aimed to construct novel nutritional risk indexes (NRIs) using peripheral blood markers via Lasso-Cox regression and validate their prognostic value. Methods The electric medical records in our institution were searched and data of 525 NMIBC patients were collected. The Lasso-Cox regression was employed to screen preoperative blood biomarkers correlated with recurrence-free survival (RFS), time to BCG-treatment failure (TTF), and progression-free survival (PFS). NRIs were developed based on selected markers and validated against GNRI, PNI, NPS, and the EAU2021 risk model using Kaplan–Meier analysis, Cox regression, receiver-operating characteristic (ROC) curves, Concordance index (C-index) and Decision Curve analysis. Results Lasso-Cox regression identified distinct blood biomarkers: gamma-glutamyl transpeptidase (GGT), serum total protein (TP), albumin and cholesterol were predictive of tumor recurrence and BCG failure, while GGT, TP, and coefficient variation of red blood cell volume distribution width were linked to tumor progression. Three NRIs—NRITR (RFS), NRIBF (TTF) and NRITP (PFS)—were constructed. The NRIs exhibited prognostic value through Kaplan–Meier analysis. Multivariate Cox analysis confirmed NRITR (HR = 0.38, 95%CI:0.28–0.53), NRIBF (HR = 0.45, 95%CI: 0.30–0.67), and NRITP (HR = 0.38, 95%CI: 0.21–0.69) as independent predictors. Nomograms incorporating NRIs demonstrated superior discriminative performance in predicting RFS (AUC = 0.739, C-index = 0.673), TTF (AUC = 0.795, C-index = 0.767), and PFS (AUC = 0.796, C-index = 0.788), and could bring more net benefit for NMIBC patients. Conclusion The Lasso-Cox regression may offer superior value in selecting prognostic biomarkers for NMIBC. The Lasso-Cox regression based NRIs enhance prognostic stratification for BCG-treated NMIBC, outperforming existing blood-based nutritional risk indicators and the EAU2021 model. Incorporation of blood-based nutritional indicators into clinical practice could optimization of personalized NMIBC treatment strategies and clinical decision-making. Further validation is warranted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
zyl发布了新的文献求助10
刚刚
简绮完成签到 ,获得积分10
1秒前
李林完成签到,获得积分10
2秒前
2秒前
言无间完成签到,获得积分10
3秒前
鑫xin发布了新的文献求助10
3秒前
3秒前
3秒前
chenqiumu应助Recho采纳,获得30
3秒前
小高完成签到,获得积分10
4秒前
4秒前
春雨完成签到,获得积分10
4秒前
5秒前
青阳完成签到,获得积分10
5秒前
Someone发布了新的文献求助20
6秒前
食堂里的明湖鸭完成签到,获得积分10
6秒前
树123发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
Orange应助iamnottingting采纳,获得10
8秒前
lihuahui发布了新的文献求助10
10秒前
鑫xin完成签到,获得积分20
10秒前
lr发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
在水一方应助StonesKing采纳,获得10
12秒前
在水一方应助惜陌采纳,获得10
13秒前
13秒前
15秒前
Akim应助AuB采纳,获得10
15秒前
Hello应助zyl采纳,获得10
15秒前
爱撒娇的鹭洋完成签到,获得积分10
15秒前
学fei了吗完成签到 ,获得积分10
16秒前
yyy发布了新的文献求助30
16秒前
16秒前
兰先生发布了新的文献求助10
17秒前
18秒前
荷珠发布了新的文献求助20
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494790
求助须知:如何正确求助?哪些是违规求助? 4592530
关于积分的说明 14437544
捐赠科研通 4525391
什么是DOI,文献DOI怎么找? 2479374
邀请新用户注册赠送积分活动 1464191
关于科研通互助平台的介绍 1437185