Comparison of CNNs and Transformer Models in Diagnosing Bone Metastases in Bone Scans Using Grad-CAM

医学 卷积神经网络 变压器 人工智能 可视化 深度学习 骨盆 试验装置 模式识别(心理学) 放射科 核医学 计算机科学 物理 量子力学 电压
作者
Sehyun Pak,Hye Joo Son,Dongwoo Kim,Ji Young Woo,Ik Yang,Hee Sung Hwang,Dohyoung Rim,Min Seok Choi,Suk Hyun Lee
出处
期刊:Clinical Nuclear Medicine [Lippincott Williams & Wilkins]
标识
DOI:10.1097/rlu.0000000000005898
摘要

Purpose: Convolutional neural networks (CNNs) have been studied for detecting bone metastases on bone scans; however, the application of ConvNeXt and transformer models has not yet been explored. This study aims to evaluate the performance of various deep learning models, including the ConvNeXt and transformer models, in diagnosing metastatic lesions from bone scans. Materials and Methods: We retrospectively analyzed bone scans from patients with cancer obtained at 2 institutions: the training and validation sets (n=4626) were from Hospital 1 and the test set (n=1428) was from Hospital 2. The deep learning models evaluated included ResNet18, the Data-Efficient Image Transformer (DeiT), the Vision Transformer (ViT Large 16), the Swin Transformer (Swin Base), and ConvNeXt Large. Gradient-weighted class activation mapping (Grad-CAM) was used for visualization. Results: Both the validation set and the test set demonstrated that the ConvNeXt large model (0.969 and 0.885, respectively) exhibited the best performance, followed by the Swin Base model (0.965 and 0.840, respectively), both of which significantly outperformed ResNet (0.892 and 0.725, respectively). Subgroup analyses revealed that all the models demonstrated greater diagnostic accuracy for patients with polymetastasis compared with those with oligometastasis. Grad-CAM visualization revealed that the ConvNeXt Large model focused more on identifying local lesions, whereas the Swin Base model focused on global areas such as the axial skeleton and pelvis. Conclusions: Compared with traditional CNN and transformer models, the ConvNeXt model demonstrated superior diagnostic performance in detecting bone metastases from bone scans, especially in cases of polymetastasis, suggesting its potential in medical image analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兵临城下zgb完成签到,获得积分10
刚刚
万能图书馆应助狄谷南采纳,获得10
1秒前
1秒前
zv完成签到,获得积分20
1秒前
1秒前
Song0558完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
MRJJJJ完成签到,获得积分10
4秒前
潮鸣完成签到 ,获得积分10
4秒前
科研通AI6应助Flac采纳,获得10
4秒前
4秒前
5秒前
张国庆发布了新的文献求助10
5秒前
小王爱学习完成签到 ,获得积分10
5秒前
Stove发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
17835152738完成签到,获得积分10
6秒前
terryok发布了新的文献求助30
6秒前
6秒前
李佳轩发布了新的文献求助10
7秒前
7秒前
TAboo完成签到,获得积分10
7秒前
7秒前
彭于晏应助zv采纳,获得10
7秒前
7秒前
卓梨发布了新的文献求助10
7秒前
蟹老板完成签到,获得积分10
8秒前
小黄瓜896完成签到,获得积分10
8秒前
长情的涔完成签到 ,获得积分10
8秒前
D16发布了新的文献求助10
9秒前
XXY发布了新的文献求助10
9秒前
wanci应助leoric采纳,获得10
9秒前
轻舞飞扬发布了新的文献求助10
9秒前
10秒前
该换手机发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4420008
求助须知:如何正确求助?哪些是违规求助? 3900566
关于积分的说明 12129394
捐赠科研通 3546541
什么是DOI,文献DOI怎么找? 1946228
邀请新用户注册赠送积分活动 986443
科研通“疑难数据库(出版商)”最低求助积分说明 882586