Can molecular dynamics simulations improve predictions of protein-ligand binding affinity with machine learning?

灵活性(工程) 计算机科学 分子动力学 虚拟筛选 对接(动物) 地址1 人工智能 机器学习 构象集合 生物系统 计算生物学 化学 计算化学 数学 生物 生物化学 统计 护理部 受体 受体酪氨酸激酶 医学
作者
Shukai Gu,Chao Shen,Jiahui Yu,Hong Zhao,Huanxiang Liu,Liwei Liu,Rong Sheng,Lei Xu,Zhe Wang,Tingjun Hou,Yu Kang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:5
标识
DOI:10.1093/bib/bbad008
摘要

Abstract Binding affinity prediction largely determines the discovery efficiency of lead compounds in drug discovery. Recently, machine learning (ML)-based approaches have attracted much attention in hopes of enhancing the predictive performance of traditional physics-based approaches. In this study, we evaluated the impact of structural dynamic information on the binding affinity prediction by comparing the models trained on different dimensional descriptors, using three targets (i.e. JAK1, TAF1-BD2 and DDR1) and their corresponding ligands as the examples. Here, 2D descriptors are traditional ECFP4 fingerprints, 3D descriptors are the energy terms of the Smina and NNscore scoring functions and 4D descriptors contain the structural dynamic information derived from the trajectories based on molecular dynamics (MD) simulations. We systematically investigate the MD-refined binding affinity prediction performance of three classical ML algorithms (i.e. RF, SVR and XGB) as well as two common virtual screening methods, namely Glide docking and MM/PBSA. The outcomes of the ML models built using various dimensional descriptors and their combinations reveal that the MD refinement with the optimized protocol can improve the predictive performance on the TAF1-BD2 target with considerable structural flexibility, but not for the less flexible JAK1 and DDR1 targets, when taking docking poses as the initial structure instead of the crystal structures. The results highlight the importance of the initial structures to the final performance of the model through conformational analysis on the three targets with different flexibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助济民财采纳,获得10
1秒前
ELEGENCE发布了新的文献求助10
1秒前
Jasper应助渡水寻彼岸采纳,获得30
1秒前
1秒前
paulmichael发布了新的文献求助20
4秒前
小小发布了新的文献求助10
4秒前
5秒前
kirin完成签到,获得积分10
7秒前
老阎应助哈哈哈哈采纳,获得30
8秒前
enh发布了新的文献求助10
8秒前
huy完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
kalah应助ELEGENCE采纳,获得20
12秒前
13秒前
Shine完成签到 ,获得积分10
14秒前
科研通AI5应助wenfeisun采纳,获得10
14秒前
香蕉觅云应助enh采纳,获得10
15秒前
19秒前
21秒前
任性的白玉完成签到 ,获得积分10
22秒前
Mt完成签到,获得积分10
22秒前
22秒前
OCDer应助言午采纳,获得300
22秒前
23秒前
wuxifan发布了新的文献求助10
23秒前
24秒前
小二郎应助cxt1346采纳,获得10
24秒前
江南羽完成签到,获得积分10
25秒前
27秒前
28秒前
济民财发布了新的文献求助10
28秒前
猪猪hero应助sdd采纳,获得10
30秒前
wang应助许嘘嘘嘘嘘采纳,获得30
31秒前
桐桐应助kyrie采纳,获得30
32秒前
32秒前
自然向彤完成签到 ,获得积分10
32秒前
32秒前
zy完成签到 ,获得积分10
34秒前
jin发布了新的文献求助10
35秒前
量子星尘发布了新的文献求助10
36秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867198
求助须知:如何正确求助?哪些是违规求助? 3409455
关于积分的说明 10663716
捐赠科研通 3133646
什么是DOI,文献DOI怎么找? 1728348
邀请新用户注册赠送积分活动 832966
科研通“疑难数据库(出版商)”最低求助积分说明 780510